Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 24(1): e202200339, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36250581

RESUMO

Enzymes are effective biological catalysts that accelerate almost all metabolic reactions in living organisms. Synthetic modulators of enzymes are useful tools for the study of enzymatic reactions and can provide starting points for the design of new drugs. Here, we report on the discovery of a class of biologically active compounds that covalently modifies lysine residues in human liver pyruvate kinase (PKL), leading to allosteric activation of the enzyme (EC50 =0.29 µM). Surprisingly, the allosteric activation control point resides on the lysine residue K282 present in the catalytic site of PKL. These findings were confirmed by structural data, MS/MS experiments, and molecular modelling studies. Altogether, our study provides a molecular basis for the activation mechanism and establishes a framework for further development of human liver pyruvate kinase covalent activators.


Assuntos
Lisina , Piruvato Quinase , Humanos , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Espectrometria de Massas em Tandem , Fígado , Domínio Catalítico , Regulação Alostérica
2.
Biochemistry ; 60(17): 1327-1336, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724805

RESUMO

The human macrophage galactose lectin (MGL) is an endocytic type II transmembrane receptor expressed on immature monocyte-derived dendritic cells and activated macrophages and plays a role in modulating the immune system in response to infections and cancer. MGL contains an extracellular calcium-dependent (C-type) carbohydrate recognition domain (CRD) that specifically binds terminal N-acetylgalactosamine glycan residues such as the Tn and sialyl-Tn antigens found on tumor cells, as well as other N- and O-glycans displayed on certain viruses and parasites. Even though the glycan specificity of MGL is known and several binding glycoproteins have been identified, the molecular basis for substrate recognition has remained elusive due to the lack of high-resolution structures. Here we present crystal structures of the MGL CRD at near endosomal pH and in several complexes, which reveal details of the interactions with the natural ligand, GalNAc, the cancer-associated Tn-Ser antigen, and a synthetic GalNAc mimetic ligand. Like the asialoglycoprotein receptor, additional calcium atoms are present and contribute to stabilization of the MGL CRD fold. The structure provides the molecular basis for preferential binding of N-acetylgalactosamine over galactose and prompted the re-evaluation of the binding modes previously proposed in solution. Saturation transfer difference nuclear magnetic resonance data acquired using the MGL CRD and interpreted using the crystal structure indicate a single binding mode for GalNAc in solution. Models of MGL1 and MGL2, the mouse homologues of MGL, explain how these proteins might recognize LewisX and GalNAc, respectively.


Assuntos
Acetilgalactosamina/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Animais , Cristalografia por Raios X , Humanos , Ligantes , Camundongos , Ligação Proteica , Domínios Proteicos
3.
Ecotoxicology ; 30(6): 1186-1202, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34110544

RESUMO

Geranium robertianum is a herbaceous plant that prefers shady and fertile forest habitats. However, it also occurs on railway tracks, where there are difficult conditions for plant growth and regular herbicide spraying (in high concentrations, twice a year). One of the most commonly used herbicides in railway areas is glyphosate. The effect of the glyphosate on the G. robertianum plants found on railway tracks and in nearby forests in north-eastern Poland was checked. The aim of the study was to explain how G. robertianum can survive on railway tracks despite spraying with the glyphosate. Increased tolerance to the glyphosate of the G. robertianum plants from track populations was demonstrated compared to the plants from forest populations that had not previously been in contact with the herbicide. After 35 days after treatment with the herbicide, 75% of the plants from the observed forest populations withered, while only 38% did from the track populations. Ultrastructure of plant leaf cells from forest populations was strongly disturbed, which was not observed in plants from track populations. It was also shown that plants from track populations accumulated more glyphosate and AMPA in their tissues than plants from forest populations. The obtained results indicate that long-term use of herbicides may cause formation of biotypes of plants resistant to a given herbicide. This fact explains the possibility of G. robertianum occurring on railway tracks, despite spraying with the glyphosate. It is also a manifestation of microevolutionary processes.


Assuntos
Geranium , Herbicidas , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Plantas , Polônia , Glifosato
4.
Eur J Med Chem ; 257: 115504, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216812

RESUMO

Alterations in cancer metabolic pathways open up an opportunity for targeted and effective elimination of tumor cells. Pyruvate kinase M2 (PKM2) is predominantly expressed in proliferating cells and plays an essential role in directing glucose metabolism in cancer. Here, we report the design of novel class of selective PKM2 inhibitors as anti-cancer agents and their mechanism of action. Compound 5c being the most active with IC50 = 0.35 ± 0.07 µM, also downregulates PKM2 mRNA expression, modulates mitochondrial functionality, induces oxidative burst and is cytotoxic for various cancer types. Isoselenazolium chlorides have an unusual mechanism of PKM2 inhibition, inducing a functionally deficient tetrameric assembly, while exhibiting a competitive inhibitor character. The discovery of robust PKM2 inhibitors not only offers candidates for anticancer therapy but is also crucial for studying the role of PKM2 in cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Piruvato Quinase/metabolismo , Cloretos , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA