Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7980): 804-812, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730988

RESUMO

Craniosynostosis is a group of disorders of premature calvarial suture fusion. The identity of the calvarial stem cells (CSCs) that produce fusion-driving osteoblasts in craniosynostosis remains poorly understood. Here we show that both physiologic calvarial mineralization and pathologic calvarial fusion in craniosynostosis reflect the interaction of two separate stem cell lineages; a previously identified cathepsin K (CTSK) lineage CSC1 (CTSK+ CSC) and a separate discoidin domain-containing receptor 2 (DDR2) lineage stem cell (DDR2+ CSC) that we identified in this study. Deletion of Twist1, a gene associated with craniosynostosis in humans2,3, solely in CTSK+ CSCs is sufficient to drive craniosynostosis in mice, but the sites that are destined to fuse exhibit an unexpected depletion of CTSK+ CSCs and a corresponding expansion of DDR2+ CSCs, with DDR2+ CSC expansion being a direct maladaptive response to CTSK+ CSC depletion. DDR2+ CSCs display full stemness features, and our results establish the presence of two distinct stem cell lineages in the sutures, with both populations contributing to physiologic calvarial mineralization. DDR2+ CSCs mediate a distinct form of endochondral ossification without the typical haematopoietic marrow formation. Implantation of DDR2+ CSCs into suture sites is sufficient to induce fusion, and this phenotype was prevented by co-transplantation of CTSK+ CSCs. Finally, the human counterparts of DDR2+ CSCs and CTSK+ CSCs display conserved functional properties in xenograft assays. The interaction between these two stem cell populations provides a new biologic interface for the modulation of calvarial mineralization and suture patency.


Assuntos
Craniossinostoses , Humanos , Camundongos , Animais , Craniossinostoses/genética , Osteogênese , Linhagem da Célula , Fenótipo , Células-Tronco
2.
Nature ; 621(7979): 602-609, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704733

RESUMO

Vertebral bone is subject to a distinct set of disease processes from long bones, including a much higher rate of solid tumour metastases1-4. The basis for this distinct biology of vertebral bone has so far remained unknown. Here we identify a vertebral skeletal stem cell (vSSC) that co-expresses ZIC1 and PAX1 together with additional cell surface markers. vSSCs display formal evidence of stemness, including self-renewal, label retention and sitting at the apex of their differentiation hierarchy. vSSCs are physiologic mediators of vertebral bone formation, as genetic blockade of the ability of vSSCs to generate osteoblasts results in defects in the vertebral neural arch and body. Human counterparts of vSSCs can be identified in vertebral endplate specimens and display a conserved differentiation hierarchy and stemness features. Multiple lines of evidence indicate that vSSCs contribute to the high rates of vertebral metastatic tropism observed in breast cancer, owing in part to increased secretion of the novel metastatic trophic factor MFGE8. Together, our results indicate that vSSCs are distinct from other skeletal stem cells and mediate the unique physiology and pathology of vertebrae, including contributing to the high rate of vertebral metastasis.


Assuntos
Neoplasias da Mama , Linhagem da Célula , Metástase Neoplásica , Coluna Vertebral , Células-Tronco , Humanos , Neoplasias da Mama/patologia , Diferenciação Celular , Autorrenovação Celular , Metástase Neoplásica/patologia , Osteoblastos/citologia , Osteoblastos/patologia , Coluna Vertebral/citologia , Coluna Vertebral/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Biomarcadores
3.
Proc Natl Acad Sci U S A ; 111(7): 2698-703, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24497508

RESUMO

Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel-Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1-activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.


Assuntos
Calgranulina A/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Células Mieloides/metabolismo , Neovascularização Fisiológica/fisiologia , Ativação Transcricional/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Análise de Variância , Animais , Western Blotting , Colágeno , Cruzamentos Genéticos , Primers do DNA/genética , Combinação de Medicamentos , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Membro Posterior/irrigação sanguínea , Isquemia/fisiopatologia , Laminina , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase , Proteoglicanas , Ativação Transcricional/genética
4.
J Bone Miner Res ; 39(10): 1386-1392, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39052334

RESUMO

Only in the past decade have skeletal stem cells (SSCs), a cell type displaying formal evidence of stemness and serving as the ultimate origin of mature skeletal cell types such as osteoblasts, been defined. Here, we discuss a pair of recent reports that identify that SSCs do not represent a single cell type, but rather a family of related cells that each have characteristic anatomic locations and distinct functions tailored to the physiology of those sites. The distinct functional properties of these SSCs in turn provide a basis for the diseases of their respective locations. This concept emerges from one report identifying a distinct vertebral skeletal stem cell driving the high rate of breast cancer metastasis to the spine over other skeletal sites and a report identifying 2 SSCs in the calvaria that interact to mediate both physiologic calvarial mineralization and pathologic calvarial suture fusion in craniosynostosis. Despite displaying functional differences, these SSCs are each united by shared features including a shared series of surface markers and parallel differentiation hierarchies. We propose that this diversity at the level of SSCs in turn translates into a similar diversity at the level of mature skeletal cell types, including osteoblasts, with osteoblasts derived from different SSCs each displaying different functional and transcriptional characteristics reflecting their cell of origin. In this model, osteoblasts would represent not a single cell type, but rather a family of related cells each with distinct functions, paralleling the functional diversity in SSCs.


Only in the past decade have the stem cells in the skeleton been identified. Here, we discuss a pair of recent reports that identify that skeletal stem cells are actually a family of related cells that each have distinct locations and functions. These site-specific skeletal stem cells account for the signature diseases occurring in different regions of the skeleton. Specifically, one of these stem cells forms the spine and establishes that this stem cell drives the high rate of breast cancer metastasis to the spine over other skeletal sites. There are also at least 2 skeletal stem cells in the flat bones of the skull, with mutations alerting how these 2 stem cells "talk" to each other serving as a cause for disorders of premature skull fusion. Despite displaying differences in their function, these stem cells are each united by shared features including a partially shared series marker genes. We also here propose that this diversity at the level of skeletal stem cells translates into a similar diversity in mature skeletal cell types, including osteoblasts. In this model, osteoblasts are not a single cell type, but rather a family of related cells each with distinct functions.


Assuntos
Osteoblastos , Células-Tronco , Osteoblastos/metabolismo , Osteoblastos/citologia , Humanos , Células-Tronco/metabolismo , Células-Tronco/citologia , Animais , Diferenciação Celular , Osso e Ossos
5.
J Bone Joint Surg Am ; 106(8): 735-745, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38194481

RESUMO

BACKGROUND: Multiple animal models have previously been utilized to investigate anterior fusion techniques, but a mouse model has yet to be developed. The purpose of this study was to develop murine anterior interbody and posterolateral fusion techniques. METHODS: Mice underwent either anterior interbody or posterolateral spinal fusion. A protocol was developed for both procedures, including a description of the relevant anatomy. Samples were subjected to micro-computed tomography to assess fusion success and underwent biomechanical testing with use of 4-point bending. Lastly, samples were fixed and embedded for histologic evaluation. RESULTS: Surgical techniques for anterior interbody and posterolateral fusion were developed. The fusion rate was 83.3% in the anterior interbody model and 100% in the posterolateral model. Compared with a control, the posterolateral model exhibited a greater elastic modulus. Histologic analysis demonstrated endochondral ossification between bridging segments, further confirming the fusion efficacy in both models. CONCLUSIONS: The murine anterior interbody and posterolateral fusion models are efficacious and provide an ideal platform for studying the molecular and cellular mechanisms mediating spinal fusion. CLINICAL RELEVANCE: Given the extensive genetic tools available in murine disease models, use of fusion models such as ours can enable determination of the underlying genetic pathways involved in spinal fusion.


Assuntos
Vértebras Lombares , Fusão Vertebral , Animais , Camundongos , Vértebras Lombares/cirurgia , Fusão Vertebral/métodos , Microtomografia por Raio-X , Osteogênese , Modelos Animais de Doenças
6.
Bone Res ; 12(1): 46, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183236

RESUMO

Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type I collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2oim/oim mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2oim/oim mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2oim/oim phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogenitor niche as is a strategy to treat OI.


Assuntos
Modelos Animais de Doenças , Osteogênese Imperfeita , Nicho de Células-Tronco , Animais , Camundongos , Osso e Ossos/patologia , Osso e Ossos/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Osteogênese Imperfeita/patologia , Osteogênese Imperfeita/genética , Células-Tronco/metabolismo , Células-Tronco/patologia , Masculino , Feminino
7.
Nat Commun ; 15(1): 6697, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107299

RESUMO

The skeleton has been suggested to function as an endocrine organ controlling whole organism energy balance, however the mediators of this effect and their molecular links remain unclear. Here, utilizing Schnurri-3-/- (Shn3-/-) mice with augmented osteoblast activity, we show Shn3-/-mice display resistance against diet-induced obesity and enhanced white adipose tissue (WAT) browning. Conditional deletion of Shn3 in osteoblasts but not adipocytes recapitulates lean phenotype of Shn3-/-mice, indicating this phenotype is driven by skeleton. We further demonstrate osteoblasts lacking Shn3 can secrete cytokines to promote WAT browning. Among them, we identify a C-terminal fragment of SLIT2 (SLIT2-C), primarily secreted by osteoblasts, as a Shn3-regulated osteokine that mediates WAT browning. Lastly, AAV-mediated Shn3 silencing phenocopies the lean phenotype and augmented glucose metabolism. Altogether, our findings establish a novel bone-fat signaling axis via SHN3 regulated SLIT2-C production in osteoblasts, offering a potential therapeutic target to address both osteoporosis and metabolic syndrome.


Assuntos
Tecido Adiposo Branco , Osso e Ossos , Dieta Hiperlipídica , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos Knockout , Obesidade , Osteoblastos , Animais , Masculino , Camundongos , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Osso e Ossos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Obesidade/metabolismo , Obesidade/genética , Obesidade/etiologia , Osteoblastos/metabolismo , Transdução de Sinais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
8.
Res Sq ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546916

RESUMO

Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2oim/oim mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2oim/oim mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2oim/oim phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogentior niche as is a strategy to treat OI.

9.
Res Sq ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747839

RESUMO

Most skeletal fragility disorders are characterized by bone loss with a concurrent gain in marrow adipocytes 1-8. This suggests that a cell that forms adipocytes at the expense of osteoblasts is central to the pathogenesis of skeletal disorders. However, this cellular point of bifurcation between adipocyte and osteoblast differentiation pathways remains unknown. Here, we identify a new cell type defined by co-expression of skeletal stem cell and adipocyte precursor markers, 9-13 (CD24+CD29+ skeletal stem cells (SSCs)), that serves as a key cellular point of bifurcation between the osteoblast and adipocyte differentiation pathways, giving rise to closely related osteoblast and adipocyte lineage-restricted precursors. CD24+CD29+SSCs comprise a small fraction of SSCs, and only this fraction displays full stemness features, including the ability to undergo serial transplantation. In line with serving as the osteoblast/adipocyte bipotent cell, the "bone to fat" tissue remodeling occurring in models of postmenopausal osteoporosis or after high fat diet exposure occur in part by reprogramming these CD24+CD29+SSCs to change their output of lineage-restricted precursors. Lastly, as subcutaneous white adipose tissue displays a similar set of CD24+CD29+ stem cells and related lineage-restricted progenitors, these findings provide a new schema explaining the stem cell basis of bone versus adipose tissue production that unifies multiple mesenchymal tissues.

10.
Res Sq ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747772

RESUMO

Vertebral bone is subject to a distinct set of disease processes from those of long bones, notably including a much higher rate of solid tumor metastases that cannot be explained by passive blood flow distribution alone. The basis for this distinct biology of vertebral bone has remained elusive. Here we identify a vertebral skeletal stem cell (vSSC), co-expressing the transcription factors ZIC1 and PAX1 together with additional cell surface markers, whose expression profile and function are markedly distinct from those of long bone skeletal stem cells (lbSSCs). vSSCs display formal evidence of stemness, including self-renewal, label retention and sitting at the apex of their differentiation hierarchy. Lineage tracing of vSSCs confirms that they make a persistent contribution to multiple mature cell lineages in the native vertebrae. vSSCs are physiologic mediators of spine mineralization, as genetic blockade of the ability of vSSCs to generate osteoblasts results in defects in the vertebral neural arch and body. Human counterparts of vSSCs can be identified in vertebral endplate specimens and display a conserved differentiation hierarchy and stemness. Multiple lines of evidence indicate that vSSCs contribute to the high rates of vertebral metastatic tropism observed clinically in breast cancer. Specifically, when an organoid system is used to place both vSSCs and lbSSCs in an identical anatomic context, vSSC-lineage cells are more efficient than lbSSC-lineage cells at recruiting metastases, a phenotype that is due in part to increased secretion of the novel metastatic trophic factor MFGE8. Similarly, genetically targeting loss-of-function to the vSSC lineage results in reduced metastasis rates in the native vertebral environment. Taken together, vSSCs are distinct from other skeletal stem cells and mediate the unique physiology and pathology of vertebrae, including contributing to the high rate of metastatic seeding of the vertebrae.

11.
J Bone Metab ; 29(1): 1-15, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35325978

RESUMO

Extracellular signal-regulated kinases (ERKs) are evolutionarily ancient signal transducers of the mitogen-activated protein kinase (MAPK) family that have long been linked to the regulation of osteoblast differentiation and bone formation. Here, we review the physiological functions, biochemistry, upstream activators, and downstream substrates of the ERK pathway. ERK is activated in skeletal progenitors and regulates osteoblast differentiation and skeletal mineralization, with ERK serving as a key regulator of Runt-related transcription factor 2, a critical transcription factor for osteoblast differentiation. However, new evidence highlights context-dependent changes in ERK MAPK pathway wiring and function, indicating a broader set of physiological roles associated with changes in ERK pathway components or substrates. Consistent with this importance, several human skeletal dysplasias are associated with dysregulation of the ERK MAPK pathway, including neurofibromatosis type 1 and Noonan syndrome. The continually broadening array of drugs targeting the ERK pathway for the treatment of cancer and other disorders makes it increasingly important to understand how interference with this pathway impacts bone metabolism, highlighting the importance of mouse studies to model the role of the ERK MAPK pathway in bone formation.

12.
Nat Commun ; 12(1): 4611, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326333

RESUMO

Hedgehog signaling is essential for bone formation, including functioning as a means for the growth plate to drive skeletal mineralization. However, the mechanisms regulating hedgehog signaling specifically in bone-forming osteoblasts are largely unknown. Here, we identified SLIT and NTRK-like protein-5(Slitrk5), a transmembrane protein with few identified functions, as a negative regulator of hedgehog signaling in osteoblasts. Slitrk5 is selectively expressed in osteoblasts and loss of Slitrk5 enhanced osteoblast differentiation in vitro and in vivo. Loss of SLITRK5 in vitro leads to increased hedgehog signaling and overexpression of SLITRK5 in osteoblasts inhibits the induction of targets downstream of hedgehog signaling. Mechanistically, SLITRK5 binds to hedgehog ligands via its extracellular domain and interacts with PTCH1 via its intracellular domain. SLITRK5 is present in the primary cilium, and loss of SLITRK5 enhances SMO ciliary enrichment upon SHH stimulation. Thus, SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts that may be attractive as a therapeutic target to enhance bone formation.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Receptor Patched-1/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Proteínas Hedgehog/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Osteoblastos/citologia , Receptor Patched-1/genética , Transdução de Sinais
13.
Nat Commun ; 11(1): 5704, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177525

RESUMO

Neurofibromatosis type I (NF1) is characterized by prominent skeletal manifestations caused by NF1 loss. While inhibitors of the ERK activating kinases MEK1/2 are promising as a means to treat NF1, the broad blockade of the ERK pathway produced by this strategy is potentially associated with therapy limiting toxicities. Here, we have sought targets offering a more narrow inhibition of ERK activation downstream of NF1 loss in the skeleton, finding that MEKK2 is a novel component of a noncanonical ERK pathway in osteoblasts that mediates aberrant ERK activation after NF1 loss. Accordingly, despite mice with conditional deletion of Nf1 in mature osteoblasts (Nf1fl/fl;Dmp1-Cre) and Mekk2-/- each displaying skeletal defects, Nf1fl/fl;Mekk2-/-;Dmp1-Cre mice show an amelioration of NF1-associated phenotypes. We also provide proof-of-principle that FDA-approved inhibitors with activity against MEKK2 can ameliorate NF1 skeletal pathology. Thus, MEKK2 functions as a MAP3K in the ERK pathway in osteoblasts, offering a potential new therapeutic strategy for the treatment of NF1.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imidazóis/farmacologia , MAP Quinase Quinase Quinase 2/metabolismo , Neurofibromatose 1/etiologia , Piridazinas/farmacologia , Animais , Modelos Animais de Doenças , Ativação Enzimática , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , MAP Quinase Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase Quinase 2/genética , Masculino , Camundongos Transgênicos , Neurofibromatose 1/tratamento farmacológico , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Osteoblastos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Crânio/citologia
14.
Nat Commun ; 11(1): 2289, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385263

RESUMO

The osteoblast differentiation capacity of skeletal stem cells (SSCs) must be tightly regulated, as inadequate bone formation results in low bone mass and skeletal fragility, and over-exuberant osteogenesis results in heterotopic ossification (HO) of soft tissues. RUNX2 is essential for tuning this balance, but the mechanisms of posttranslational control of RUNX2 remain to be fully elucidated. Here, we identify that a CK2/HAUSP pathway is a key regulator of RUNX2 stability, as Casein kinase 2 (CK2) phosphorylates RUNX2, recruiting the deubiquitinase herpesvirus-associated ubiquitin-specific protease (HAUSP), which stabilizes RUNX2 by diverting it away from ubiquitin-dependent proteasomal degradation. This pathway is important for both the commitment of SSCs to osteoprogenitors and their subsequent maturation. This CK2/HAUSP/RUNX2 pathway is also necessary for HO, as its inhibition blocked HO in multiple models. Collectively, active deubiquitination of RUNX2 is required for bone formation and this CK2/HAUSP deubiquitination pathway offers therapeutic opportunities for disorders of inappropriate mineralization.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Ossificação Heterotópica/metabolismo , Osteogênese , Adulto , Idoso , Animais , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Diferenciação Celular , Displasia Cleidocraniana/genética , Displasia Cleidocraniana/patologia , Feminino , Deleção de Genes , Haploinsuficiência/genética , Membro Posterior/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Osteoblastos/metabolismo , Fosforilação , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo
15.
Cancer Res ; 79(4): 795-806, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30610087

RESUMO

Tumor hypoxia and aerobic glycolysis are well-known resistance factors for anticancer therapies. Here, we demonstrate that tumor-associated macrophages (TAM) enhance tumor hypoxia and aerobic glycolysis in mice subcutaneous tumors and in patients with non-small cell lung cancer (NSCLC). We found a strong correlation between CD68 TAM immunostaining and PET 18fluoro-deoxyglucose (FDG) uptake in 98 matched tumors of patients with NSCLC. We also observed a significant correlation between CD68 and glycolytic gene signatures in 513 patients with NSCLC from The Cancer Genome Atlas database. TAM secreted TNFα to promote tumor cell glycolysis, whereas increased AMP-activated protein kinase and peroxisome proliferator-activated receptor gamma coactivator 1-alpha in TAM facilitated tumor hypoxia. Depletion of TAM by clodronate was sufficient to abrogate aerobic glycolysis and tumor hypoxia, thereby improving tumor response to anticancer therapies. TAM depletion led to a significant increase in programmed death-ligand 1 (PD-L1) expression in aerobic cancer cells as well as T-cell infiltration in tumors, resulting in antitumor efficacy by PD-L1 antibodies, which were otherwise completely ineffective. These data suggest that TAM can significantly alter tumor metabolism, further complicating tumor response to anticancer therapies, including immunotherapy. SIGNIFICANCE: These findings show that tumor-associated macrophages can significantly modulate tumor metabolism, hindering the efficacy of anticancer therapies, including anti-PD-L1 immunotherapy.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Glicólise , Neoplasias Pulmonares/patologia , Macrófagos/imunologia , Hipóxia Tumoral/imunologia , Animais , Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Prognóstico , Linfócitos T/imunologia , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/metabolismo
16.
RSC Adv ; 8(34): 18771-18775, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35539688

RESUMO

We developed supramolecular hyaluronate (HA) hydrogels to encapsulate genetically engineered mesenchymal stem cells (MSCs) for the treatment of limb ischemia. In vivo angiogenic factors could be produced stably by the bioengineered MSCs (BMSCs) within the supramolecular hydrogels showing effective vascular repair and enhanced blood perfusion.

17.
Adv Healthc Mater ; 7(24): e1800695, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30450820

RESUMO

PbS/CdS core/shell quantum dots (QDs) that emit at the second near-infrared (NIR-II, 1000-1700 nm) window are synthesized. The PbS seed size and CdS shell thicknesses are carefully controlled to produce bright and narrow fluorescence that are suitable for multiplexing. A polymer encapsulation yields polymer-encapsulated NIR-II QDs (PQDs), which provides the QDs with long-term fluorescence stability over a week in biological media. Exploiting the simple bioconjugation capability of PQDs, folic acids are conjugated to PQDs that can efficiently label folate receptor overexpressing cell lines. The PQDs afford multiplexed and nearly real-time longitudinal whole-body in vivo imaging. Two NIR-II QD probes are prepared: folic acid-conjugated PQDs (FA-PQDs) emitting at 1280 nm and unconjugated PQDs emitting at 1080 nm. The two PQDs are engineered to have compact and similar hydrodynamic sizes. A mixture of the folic acid-conjugated PQD and unconjugated PQDs is injected intravenously into a tumor-xenografted mouse, and the signals from them are monitored. This NIR-II whole-body imaging with the two PQDs provides precise evaluation of the active ligand-assisted tumor-targeting capability of the FA-PQD probe because the hydrodynamic size control of the two PQDs effectively eliminates effects from the size-dependent accumulations by permeations and retentions in tumors.


Assuntos
Neoplasias/diagnóstico por imagem , Pontos Quânticos/química , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Compostos de Cádmio/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Ácido Fólico/química , Humanos , Chumbo/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Confocal , Polímeros/química , Pontos Quânticos/toxicidade , Sulfetos/química , Transplante Heterólogo
19.
Oncotarget ; 8(67): 111508-111521, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29340071

RESUMO

Cells universally adapt to ischemic conditions by turning on a transcription factor hypoxia-inducible factor (HIF), in which its role is known to differ widely across many different types of cells. Given that microglia have been reported as an essential mediator of neuroinflammation in many brain diseases, we examined the role of HIF in microglia in the progression of an acute phase of ischemic stroke by challenging our novel strains of myeloid-specific Hif-1α or Hif-2α knockout (KO) mice created by Cre-loxP system via middle cerebral artery occlusion (MCAO). We observed that Hif-1α but not Hif-2α KO mice exhibited an improved recovery compared to wild-type (WT) mice determined by behavioral tests. Immunostaining analyses revealed that there were increased numbers of both mature and immature neurons while microglia and apoptotic cells were significantly decreased in the dentate gyrus of Hif-1α KO mice following MCAO. By isolating microglia with fluorescence-activated cell sorter, we found that HIF-1α-deficient microglia were impaired in phagocytosis, reactive oxygen species (ROS) production, and tumor necrosis factor-α (TNF-α) secretion. We further observed a significant decrease in the expression of Cd36 and milk fat globule-epidermal growth factor 8 (Mfg-e8) genes, both of which contain hypoxia-responsive element (HRE). Knocking down either of these genes in BV2 microglial cells was sufficient to abrogate HIF-mediated increase in phagocytosis, production of intracellular ROS, or TNF-α secretion. Our results therefore suggest that HIF-1α in microglia is a novel therapeutic target to protect neuronal survival following an acute phase of ischemic stroke.

20.
Radiat Oncol J ; 34(4): 239-249, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28030900

RESUMO

Tumor hypoxia, a common feature occurring in nearly all human solid tumors is a major contributing factor for failures of anticancer therapies. Because ionizing radiation depends heavily on the presence of molecular oxygen to produce cytotoxic effect, the negative impact of tumor hypoxia had long been recognized. In this review, we will highlight some of the past attempts to overcome tumor hypoxia including hypoxic radiosensitizers and hypoxia-selective cytotoxin. Although they were (still are) a very clever idea, they lacked clinical efficacy largely because of 'reoxygenation' phenomenon occurring in the conventional low dose hyperfractionation radiotherapy prevented proper activation of these compounds. Recent meta-analysis and imaging studies do however indicate that there may be a significant clinical benefit in lowering the locoregional failures by using these compounds. Latest technological advancement in radiotherapy has allowed to deliver high doses of radiation conformally to the tumor volume. Although this technology has brought superb clinical responses for many types of cancer, recent modeling studies have predicted that tumor hypoxia is even more serious because 'reoxygenation' is low thereby leaving a large portion of hypoxic tumor cells behind. Wouldn't it be then reasonable to combine hypoxic radiosensitizers and/or hypoxia-selective cytotoxin with the latest radiotherapy? We will provide some preclinical and clinical evidence to support this idea hoping to revamp an enthusiasm for hypoxic radiosensitizers or hypoxia-selective cytotoxins as an adjunct therapy for radiotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA