Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Curr Opin Cell Biol ; 18(1): 26-31, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16337782

RESUMO

Cofilin is a ubiquitous actin-binding factor required for the reorganization of actin filaments in eukaryotes. The dephosphorylation of cofilin enables its actin severing and depolymerizing activity and drives directional cell motility, thus providing a simple phosphoregulatory mechanism for actin reorganization. To date, two cofilin-specific phosphatases have been identified: Slingshot and Chronophin. These cofilin phosphatases are unrelated in sequence and regulatory properties, each potentially providing a unique mechanism for cofilin activation under varying biological circumstances.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Actinas/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Animais , Humanos , Hidrolases/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosforilação , Distribuição Tecidual
3.
Dev Cell ; 12(5): 699-712, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17488622

RESUMO

Formation of the mitotic cleavage furrow is dependent upon both microtubules and activity of the small GTPase RhoA. GEF-H1 is a microtubule-regulated exchange factor that couples microtubule dynamics to RhoA activation. GEF-H1 localized to the mitotic apparatus in HeLa cells, particularly at the tips of cortical microtubules and the midbody, and perturbation of GEF-H1 function induced mitotic aberrations, including asymmetric furrowing, membrane blebbing, and impaired cytokinesis. The mitotic kinases Aurora A/B and Cdk1/Cyclin B phosphorylate GEF-H1, thereby inhibiting GEF-H1 catalytic activity. Dephosphorylation of GEF-H1 occurs just prior to cytokinesis, accompanied by GEF-H1-dependent GTP loading on RhoA. Using a live cell biosensor, we demonstrate distinct roles for GEF-H1 and Ect2 in regulating Rho activity in the cleavage furrow, with GEF-H1 catalyzing Rho activation in response to Ect2-dependent localization and initiation of cell cleavage. Our results identify a GEF-H1-dependent mechanism to modulate localized RhoA activation during cytokinesis under the control of mitotic kinases.


Assuntos
Proteína Quinase CDC2/metabolismo , Citocinese , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Aurora Quinases , Membrana Celular/metabolismo , Sobrevivência Celular , Regulação para Baixo/genética , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Transporte Proteico , Fatores de Troca de Nucleotídeo Guanina Rho , Frações Subcelulares/metabolismo
4.
Dev Cell ; 13(5): 646-662, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17981134

RESUMO

Protrusion of the leading edge of migrating epithelial cells requires precise regulation of two actin filament (F-actin) networks, the lamellipodium and the lamella. Cofilin is a downstream target of Rho GTPase signaling that promotes F-actin cycling through its F-actin-nucleating, -severing, and -depolymerizing activity. However, its function in modulating lamellipodium and lamella dynamics, and the implications of these dynamics for protrusion efficiency, has been unclear. Using quantitative fluorescent speckle microscopy, immunofluorescence, and electron microscopy, we establish that the Rac1/Pak1/LIMK1 signaling pathway controls cofilin activity within the lamellipodium. Enhancement of cofilin activity accelerates F-actin turnover and retrograde flow, resulting in widening of the lamellipodium. This is accompanied by increased spatial overlap of the lamellipodium and lamella networks and reduced cell-edge protrusion efficiency. We propose that cofilin functions as a regulator of cell protrusion by modulating the spatial interaction of the lamellipodium and lamella in response to upstream signals.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Actinas/fisiologia , Células Epiteliais/fisiologia , Proteínas dos Microfilamentos/fisiologia , Pseudópodes/fisiologia , Quinases Ativadas por p21/fisiologia , Linhagem Celular , Movimento Celular , Imunofluorescência , Humanos , Quinases Lim/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Nat Cell Biol ; 7(1): 21-9, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15580268

RESUMO

Cofilin is a key regulator of actin cytoskeletal dynamics whose activity is controlled by phosphorylation of a single serine residue. We report the biochemical isolation of chronophin (CIN), a unique cofilin-activating phosphatase of the haloacid dehalogenase (HAD) superfamily. CIN directly dephosphorylates cofilin with high specificity and colocalizes with cofilin in motile and dividing cells. Loss of CIN activity blocks phosphocycling of cofilin, stabilizes F-actin structures and causes massive cell division defects. Our findings identify a physiological phospho-serine protein substrate for a mammalian HAD-type phosphatase and demonstrate that CIN is an important novel regulator of cofilin-mediated actin reorganization.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Hidrolases/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fatores de Despolimerização de Actina , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Movimento Celular/fisiologia , Citoplasma/metabolismo , DNA Complementar/análise , DNA Complementar/genética , Regulação para Baixo/fisiologia , Células HeLa , Humanos , Hidrolases/química , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/isolamento & purificação , Fosforilação , Pseudópodes/metabolismo , Interferência de RNA , Coelhos , Serina/metabolismo
6.
J Biol Chem ; 285(8): 5450-60, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20022956

RESUMO

Cofilin-actin bundles (rods), which form in axons and dendrites of stressed neurons, lead to synaptic dysfunction and may mediate cognitive deficits in dementias. Rods form abundantly in the cytoplasm of non-neuronal cells in response to many treatments that induce rods in neurons. Rods in cell lysates are not stable in detergents or with added calcium. Rods induced by ATP-depletion and released from cells by mechanical lysis were first isolated from two cell lines expressing chimeric actin-depolymerizing factor (ADF)/cofilin fluorescent proteins by differential and equilibrium sedimentation on OptiPrep gradients and then from neuronal and non-neuronal cells expressing only endogenous proteins. Rods contain ADF/cofilin and actin in a 1:1 ratio. Isolated rods are stable in dithiothreitol, EGTA, Ca(2+), and ATP. Cofilin-GFP-containing rods are stable in 500 mM NaCl, whereas rods formed from endogenous proteins are significantly less stable in high salt. Proteomic analysis of rods formed from endogenous proteins identified other potential components whose presence in rods was examined by immunofluorescence staining of cells. Only actin and ADF/cofilin are in rods during all phases of their formation; furthermore, the rapid assembly of rods in vitro from these purified proteins at physiological concentration shows that they are the only proteins necessary for rod formation. Cytoplasmic rod formation is inhibited by cytochalasin D and jasplakinolide. Time lapse imaging of rod formation shows abundant small needle-shaped rods that coalesce over time. Rod filament lengths measured by ultrastructural tomography ranged from 22 to 1480 nm. These results suggest rods form by assembly of cofilin-actin subunits, followed by self-association of ADF/cofilin-saturated F-actin.


Assuntos
Fatores de Despolimerização de Actina/química , Fatores de Despolimerização de Actina/isolamento & purificação , Actinas/química , Actinas/isolamento & purificação , Destrina/química , Destrina/isolamento & purificação , Complexos Multiproteicos/química , Complexos Multiproteicos/isolamento & purificação , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Destrina/genética , Destrina/metabolismo , Células HeLa , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ratos , Suínos , Xenopus laevis
7.
Nat Cell Biol ; 4(4): 294-301, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11912491

RESUMO

Regulation of the actin cytoskeleton by microtubules is mediated by the Rho family GTPases. However, the molecular mechanisms that link microtubule dynamics to Rho GTPases have not, as yet, been identified. Here we show that the Rho guanine nucleotide exchange factor (GEF)-H1 is regulated by an interaction with microtubules. GEF-H1 mutants that are deficient in microtubule binding have higher activity levels than microtubule-bound forms. These mutants also induce Rho-dependent changes in cell morphology and actin organization. Furthermore, drug-induced microtubule depolymerization induces changes in cell morphology and gene expression that are similar to the changes induced by the expression of active forms of GEF-H1. Furthermore, these effects are inhibited by dominant-negative versions of GEF-H1. Thus, GEF-H1 links changes in microtubule integrity to Rho-dependent regulation of the actin cytoskeleton.


Assuntos
Actinas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Microtúbulos/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/química , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo , Animais , Células COS , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Genes Reporter , Nucleotídeos de Guanina , Células HeLa , Humanos , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Genéticos , Plasmídeos/metabolismo , Testes de Precipitina , Estrutura Terciária de Proteína , Fatores de Troca de Nucleotídeo Guanina Rho , Fatores de Tempo , Transfecção , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
8.
J Immunol ; 183(4): 2718-28, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19625648

RESUMO

Rac1 and Rac2, members of the small Rho GTPase family, play essential roles in coordinating directional migration and superoxide production during neutrophil responses to chemoattractants. Although earlier studies in Rac1 and Rac2 knockout mice have demonstrated unique roles for each Rac isoform in chemotaxis and NADPH oxidase activation, it is still unclear how human neutrophils use Rac1 and Rac2 to achieve their immunological responses to foreign agent stimulation. In the current study, we used TAT dominant-negative Rac1-T17N and Rac2-T17N fusion proteins to acutely alter the activity of Rac1 and Rac2 individually in human neutrophils. We demonstrate distinct activation kinetics and different roles for Rac1 and Rac2 in response to low vs high concentrations of fMLP. These observations were verified using neutrophils from mice in which Rac1 or Rac2 was genetically absent. Based on these results, we propose a model to explain how human neutrophils kill invading microbes while limiting oxidative damage to the adjacent surrounding healthy tissue through the differential activation of Rac1 and Rac2 in response to different concentrations of chemoattractant.


Assuntos
Quimiotaxia de Leucócito/imunologia , Neuropeptídeos/metabolismo , Ativação de Neutrófilo/imunologia , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Quimiotaxia de Leucócito/genética , Relação Dose-Resposta Imunológica , Produtos do Gene tat/genética , Produtos do Gene tat/fisiologia , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/deficiência , Ativação de Neutrófilo/genética , Estresse Oxidativo/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/fisiologia , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/deficiência , Proteínas rac1 de Ligação ao GTP , Proteína RAC2 de Ligação ao GTP
9.
Trends Cell Biol ; 15(3): 163-71, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15752980

RESUMO

Leukocytes are key cellular components of innate immunity. These phagocytic cells respond to bacteria at sites of infection through chemotactic sensing and directed motility regulated by Rho GTPases. The development of sensitive probes of Rho GTPase dynamics has provided insights into the temporal and spatial aspects of GTPase regulation during chemotaxis and subsequent microbial phagocytosis. The resulting destruction of ingested bacteria by means of reactive oxygen species (ROS) depends on a Rac-regulated "molecular switch" that is modulated by antagonistic crosstalk involving Cdc42. Recent studies of leukocytes derived from Rac1- and Rac2-knockout mice have shown that these highly homologous GTPases have unique biological roles. An understanding of the biochemical basis for such distinct activities should provide novel insights into the molecular details of Rho GTPase function and regulation in innate immunity.


Assuntos
Imunidade Inata , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Quimiotaxia , Humanos , Inflamação , Leucócitos/citologia , Camundongos , Camundongos Knockout , Modelos Biológicos , NADPH Oxidases/metabolismo , Fagócitos/enzimologia , Fagocitose , Espécies Reativas de Oxigênio , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/fisiologia , Proteínas rac de Ligação ao GTP/metabolismo , Proteína RAC2 de Ligação ao GTP
10.
Trends Cell Biol ; 15(7): 356-63, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15921909

RESUMO

The GDP dissociation inhibitors (GDIs) are pivotal regulators of Rho GTPase function. GDIs control the access of Rho GTPases to regulatory guanine nucleotide exchange factors and GTPase-activating proteins, to effector targets and to membranes where such effectors reside. We discuss here our current understanding of how Rho GTPase-GDI complexes are regulated by various proteins, lipids and enzymes that exert GDI displacement activity. We propose that phosphorylation mediated by diverse kinases might provide a means of controlling and coordinating Rho GTPase activation.


Assuntos
Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/fisiologia , Proteínas Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Ativadores de Enzimas/farmacologia , Fatores de Troca do Nucleotídeo Guanina/farmacologia , Humanos , Lipídeos/farmacologia , Fosforilação , Proteínas/fisiologia , Proteínas Supressoras de Tumor , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/fisiologia , Inibidor gama de Dissociação do Nucleotídeo Guanina rho , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
11.
Infect Immun ; 77(1): 348-59, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18936176

RESUMO

Anthrax lethal factor (LF), secreted by Bacillus anthracis, interacts with protective antigen to form a bipartite toxin (lethal toxin [LT]) that exerts pleiotropic biological effects resulting in subversion of the innate immune response. Although the mitogen-activated protein kinase kinases (MKKs) are the major intracellular protein targets of LF, the pathology induced by LT is not well understood. The statin family of HMG-coenzyme A reductase inhibitors have potent anti-inflammatory effects independent of their cholesterol-lowering properties, which have been attributed to modulation of Rho family GTPase activity. The Rho GTPases regulate vesicular trafficking, cytoskeletal dynamics, and cell survival and proliferation. We hypothesized that disruption of Rho GTPase function by statins might alter LT action. We show here that statins delay LT-induced death and MKK cleavage in RAW macrophages and that statin-mediated effects on LT action are attributable to disruption of Rho GTPases. The Rho GTPase-inactivating toxin, toxin B, did not significantly affect LT binding or internalization, suggesting that the Rho GTPases regulate trafficking and/or localization of LT once internalized. The use of drugs capable of inhibiting Rho GTPase activity, such as statins, may provide a means to attenuate intoxication during B. anthracis infection.


Assuntos
Antígenos de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Macrófagos/efeitos dos fármacos , Camundongos
12.
FASEB J ; 22(6): 1737-47, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18198211

RESUMO

The signal transduction pathways involved in neuronal death are not well understood. Neuroglobin (Ngb), a recently discovered vertebrate globin expressed predominantly in the brain, shows increased expression in neurons in response to oxygen deprivation and protects neurons from ischemic and hypoxic death. The mechanism of this neuroprotection is unclear. We examined the surface distribution of raft membrane microdomains in cortical neuron cultures during hypoxia using the raft marker cholera toxin B (CTx-B) subunit. Mechanistically, we demonstrate that hypoxia induces rapid polarization of somal membranes and aggregation of microdomains with the subjacent mitochondrial network. This signaling complex is formed well before neurons commit to die, consistent with an early role in death signal transduction. Neurons from Ngb-overexpressing transgenic (Ngb-Tg) mice do not undergo microdomain polarization or mitochondrial aggregation in response to, and are resistant to death from hypoxia. We link the protective actions of Ngb to inhibition of Pak1 kinase activity and Rac1-GDP-dissociation inhibitor disassociation, and inhibition of actin assembly and death-signaling module polarization.


Assuntos
Globinas/fisiologia , Hipóxia/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neurônios/patologia , Transdução de Sinais , Actinas/antagonistas & inibidores , Animais , Córtex Cerebral , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Camundongos , Camundongos Transgênicos , Neuroglobina , Quinases Ativadas por p21/antagonistas & inibidores
13.
J Cell Biol ; 161(5): 845-51, 2003 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-12796474

RESUMO

Actin in migrating cells is regulated by Rho GTPases. However, Rho proteins might also affect microtubules (MTs). Here, we used time-lapse microscopy of PtK1 cells to examine MT regulation downstream of Rac1. In these cells, "pioneer" MTs growing into leading-edge protrusions exhibited a decreased catastrophe frequency and an increased time in growth as compared with MTs further from the leading edge. Constitutively active Rac1(Q61L) promoted pioneer behavior in most MTs, whereas dominant-negative Rac1(T17N) eliminated pioneer MTs, indicating that Rac1 is a regulator of MT dynamics in vivo. Rac1(Q61L) also enhanced MT turnover through stimulation of MT retrograde flow and breakage. Inhibition of p21-activated kinases (Paks), downstream effectors of Rac1, inhibited Rac1(Q61L)-induced MT growth and retrograde flow. In addition, Rac1(Q61L) promoted lamellipodial actin polymerization and Pak-dependent retrograde flow. Together, these results indicate coordinated regulation of the two cytoskeletal systems in the leading edge of migrating cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Células Eucarióticas/metabolismo , Microtúbulos/metabolismo , Pseudópodes/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Microscopia de Vídeo , Mutação/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Ativadas por p21 , Proteínas rac1 de Ligação ao GTP/genética
14.
Chem Biol ; 15(4): 305-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18420134

RESUMO

p21-activated kinases are important signaling kinases for which no specific chemical inhibitors are known. In this issue of Chemistry & Biology, Deacon et al. target allosteric transitions undergone during PAK activation to identify a selective inhibitor (Deacon et al., 2008).


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/metabolismo , Animais , Dissulfetos/química , Dissulfetos/metabolismo , Dissulfetos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Camundongos , Conformação Proteica/efeitos dos fármacos , Especificidade por Substrato
15.
Mol Biol Cell ; 17(11): 4760-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16943322

RESUMO

Rho GTPases (Rac, Rho, and Cdc42) play important roles in regulating cell function through their ability to coordinate the actin cytoskeleton, modulate the formation of signaling reactive oxidant species, and control gene transcription. Activation of Rho GTPase signaling pathways requires the regulated release of Rho GTPases from RhoGDI complexes, followed by their reuptake after membrane cycling. We show here that Src kinase binds and phosphorylates RhoGDI both in vitro and in vivo at Tyr156. Analysis of Rho GTPase-RhoGDI complexes using in vitro assays of complexation and in vivo by coimmunoprecipitation analysis indicates that Src-mediated phosphorylation of Tyr156 causes a dramatic decrease in the ability of RhoGDI to form a complex with RhoA, Rac1, or Cdc42. Phosphomimetic mutation of Tyr156-->Glu results in the constitutive association of RhoGDI(Y156E) with the plasma membrane and/or associated cortical actin. Substantial cortical localization of tyrosine-phosphorylated RhoGDI is also observed in fibroblasts expressing active Src, where it is most evident in podosomes and regions of membrane ruffling. Expression of membrane-localized RhoGDI(Y156E) mutant is associated with enhanced cell spreading and membrane ruffling. These results suggest that Src-mediated RhoGDI phosphorylation is a novel physiological mechanism for regulating Rho GTPase cytosol membrane-cycling and activity.


Assuntos
Estruturas da Membrana Celular/metabolismo , Citosol/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular Transformada , Fibroblastos/citologia , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Transporte Proteico , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
16.
Trends Biochem Sci ; 28(9): 502-8, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-13678962

RESUMO

In addition to their role in bacterial killing by leukocytes, reactive oxygen species (ROS) have been increasingly recognized as important components of signaling and host defense in other cell types. The formation of ROS in both phagocytic- and non-phagocytic cells involves membrane-localized NADPH oxidases (Noxs). Nox proteins show structural homology to the cytochrome b(558) of leukocytes but, until recently, their regulation has been poorly understood. Here, we describe our current understanding of Nox function, and discuss emerging paradigms for regulation of Nox activity by Rac GTPase and/or other cytosolic components.


Assuntos
Leucócitos/enzimologia , NADPH Oxidases/metabolismo , Animais , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Leucócitos/imunologia , Modelos Moleculares , NADPH Oxidases/genética , Fagócitos/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
17.
J Cell Physiol ; 215(3): 715-24, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18064650

RESUMO

Acute lung injury, sepsis, lung inflammation, and ventilator-induced lung injury are life-threatening conditions associated with lung vascular barrier dysfunction, which may lead to pulmonary edema. Increased levels of atrial natriuretic peptide (ANP) in lung circulation reported in these pathologies suggest its potential role in the modulation of lung injury. Besides well recognized physiological effects on vascular tone, plasma volume, and renal function, ANP may exhibit protective effects in models of lung vascular endothelial cell (EC) barrier dysfunction. However, the molecular mechanisms of ANP protective effects are not well understood. The recently described cAMP-dependent guanine nucleotide exchange factor (GEF) Epac activates small GTPase Rap1, which results in activation of small GTPase Rac-specific GEFs Tiam1 and Vav2 and Rac-mediated EC barrier protective responses. Our results show that ANP stimulated protein kinase A and the Epac/Rap1/Tiam/Vav/Rac cascade dramatically attenuated thrombin-induced pulmonary EC permeability and the disruption of EC monolayer integrity. Using pharmacological and molecular activation and inhibition of cAMP-and cGMP-dependent protein kinases (PKA and PKG), Epac, Rap1, Tiam1, Vav2, and Rac we linked ANP-mediated protective effects to the activation of Epac/Rap and PKA signaling cascades, which dramatically inhibited the Rho pathway of thrombin-induced EC hyper-permeability. These results suggest a novel mechanism of ANP protective effects against agonist-induced pulmonary EC barrier dysfunction via inhibition of Rho signaling by Epac/Rap1-Rac and PKA signaling cascades.


Assuntos
Fator Natriurético Atrial/farmacologia , Barreira Alveolocapilar/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Endoteliais/enzimologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Pulmão/enzimologia , Proteínas rac de Ligação ao GTP/metabolismo , Actinas/metabolismo , Barreira Alveolocapilar/efeitos dos fármacos , Barreira Alveolocapilar/patologia , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , GMP Cíclico/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Trombina/farmacologia , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/metabolismo
18.
J Leukoc Biol ; 81(4): 1127-36, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17227822

RESUMO

PI 3,4,5-trisphosphate [PI(3,4,5)P3; PIP3]-dependent Rac exchanger 1 (P-Rex1) is a Rac-specific guanine nucleotide exchange factor abundant in neutrophils and myeloid cells. As a selective catalyst for Rac2 activation, P-Rex1 serves as an important regulator of human neutrophil NADPH oxidase activity and chemotaxis in response to a variety of extracellular stimuli. The exchange activity of P-Rex1 is synergistically activated by the binding of PIP3 and betagamma subunits of heterotrimeric G proteins in vitro, suggesting that the association of P-Rex1 with membranes is a prerequisite for cellular activation. However, the spatial regulation of endogenous P-Rex1 has not been well defined, particularly in human neutrophils activated through G protein-coupled receptors. Upon stimulation of neutrophil chemoattractant receptors, we observed that P-Rex1 translocated from cytoplasm to the leading edge of polarized cells in a G protein betagamma subunit- and PIP3-dependent manner, where it colocalized with F-actin and its substrate, Rac2. Redistribution of P-Rex1 to the leading edge was also dependent on tyrosine kinase activity and was modulated by cell adhesion. Furthermore, we observed that activation of cAMP-dependent protein kinase A (PKA), which phosphorylates and inactivates P-Rex1, inhibited its translocation. Our data indicate that endogenous P-Rex1 translocates to areas of Rac2 and cytoskeletal activation at the leading edge in response to chemoattractant stimuli in human neutrophils and that this translocation can be negatively modulated by activation of PKA and by cell adhesion.


Assuntos
Fatores Quimiotáticos/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neutrófilos/metabolismo , Transdução de Sinais , Proteínas rac de Ligação ao GTP/metabolismo , Adesão Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Proteínas de Ligação ao GTP/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Transporte Proteico , Proteína RAC2 de Ligação ao GTP
19.
Curr Biol ; 12(19): 1704-10, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12361576

RESUMO

The functionality of the actin cytoskeleton depends on a dynamic equilibrium between filamentous and monomeric actin. Proteins of the ADF/cofilin family are essential for the high rates of actin filament turnover observed in motile cells through regulation of actin polymerization/depolymerization cycles. Rho GTPases act through p21-activated kinase-1 (Pak-1) and Rho kinase to inhibit cofilin activity via the LIM kinase (LIMK)-mediated phosphorylation of cofilin on Ser3. We report the identification of 14-3-3zeta as a novel phosphocofilin binding protein involved in the maintenance of the cellular phosphocofilin pool. A Ser3 phosphocofilin binding protein was purified from bovine brain and was identified as 14-3-3zeta by mass spectrometry. The phosphorylation-dependent interaction between cofilin and 14-3-3zeta was confirmed in pulldown and coimmunoprecipitation experiments. Both Ser3 phosphorylation and a 14-3-3 recognition motif in cofilin are necessary for 14-3-3 binding. The expression of 14-3-3zeta increases phosphocofilin levels, and the coexpression of 14-3-3zeta with LIMK further elevates phosphocofilin levels and potentiates LIMK-dependent effects on the actin cytoskeleton. This potentiation of cofilin action appears to be a result of the protection of phosphocofilin from phosphatase-mediated dephosphorylation at Ser3 by bound 14-3-3zeta. Taken together, these results suggest that 14-3-3zeta proteins may play a dynamic role in the regulation of cellular actin structures through the maintenance of phosphocofilin levels.


Assuntos
Actinas/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas 14-3-3 , Fatores de Despolimerização de Actina , Animais , Sítios de Ligação , Bovinos , Citoesqueleto/química , Citoesqueleto/metabolismo , Humanos , Espectrometria de Massas , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica
20.
Curr Biol ; 12(23): 2029-34, 2002 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-12477392

RESUMO

The ability of cells to recognize and respond with directed motility to chemoattractant agents is critical to normal physiological function. Neutrophils represent the prototypic chemotactic cell in that they respond to signals initiated through the binding of bacterial peptides and other chemokines to G protein-coupled receptors with speeds of up to 30 microm/min. It has been hypothesized that localized regulation of cytoskeletal dynamics by Rho GTPases is critical to orchestrating cell movement. Using a FRET-based biosensor approach, we investigated the dynamics of Rac GTPase activation during chemotaxis of live primary human neutrophils. Rac has been implicated in establishing and maintaining the leading edge of motile cells, and we show that Rac is dynamically activated at specific locations in the extending leading edge. However, we also demonstrate activated Rac in the retracting tail of motile neutrophils. Rac activation is both stimulus and adhesion dependent. Expression of a dominant-negative Rac mutant confirms that Rac is functionally required both for tail retraction and for formation of the leading edge during chemotaxis. These data establish that Rac GTPase is spatially and temporally regulated to coordinate leading-edge extension and tail retraction during a complex motile response, the chemotaxis of human neutrophils.


Assuntos
Quimiotaxia de Leucócito , Neutrófilos/fisiologia , Proteínas rac de Ligação ao GTP/sangue , Ativação Enzimática , Humanos , Técnicas In Vitro , Microscopia Confocal , Neutrófilos/citologia , Neutrófilos/enzimologia , Proteínas rac de Ligação ao GTP/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA