Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(7): 1533-1547, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507813

RESUMO

Neuroinflammation plays a crucial role in the development of neurodegenerative protein misfolding disorders. This category of progressive diseases includes, but is not limited to, Alzheimer's disease, Parkinson's disease, and prion diseases. Shared pathogenesis involves the accumulation of misfolded proteins, chronic neuroinflammation, and synaptic dysfunction, ultimately leading to irreversible neuronal loss, measurable cognitive deficits, and death. Presently, there are few to no effective treatments to halt the advancement of neurodegenerative diseases. We hypothesized that directly targeting neuroinflammation by downregulating the transcription factor, NF-κB, and the inflammasome protein, NLRP3, would be neuroprotective. To achieve this, we used a cocktail of RNA targeting therapeutics (SB_NI_112) shown to be brain-penetrant, nontoxic, and effective inhibitors of both NF-κB and NLRP3. We utilized a mouse-adapted prion strain as a model for neurodegenerative diseases to assess the aggregation of misfolded proteins, glial inflammation, neuronal loss, cognitive deficits, and lifespan. Prion-diseased mice were treated either intraperitoneally or intranasally with SB_NI_112. Behavioral and cognitive deficits were significantly protected by this combination of NF-κB and NLRP3 downregulators. Treatment reduced glial inflammation, protected against neuronal loss, prevented spongiotic change, rescued cognitive deficits, and significantly lengthened the lifespan of prion-diseased mice. We have identified a nontoxic, systemic pharmacologic that downregulates NF-κB and NLRP3, prevents neuronal death, and slows the progression of neurodegenerative diseases. Though mouse models do not always predict human patient success and the study was limited due to sample size and number of dosing methods utilized, these findings serve as a proof of principle for continued translation of the therapeutic SB_NI_112 for prion disease and other neurodegenerative diseases. Based on the success in a murine prion model, we will continue testing SB_NI_112 in a variety of neurodegenerative disease models, including Alzheimer's disease and Parkinson's disease.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Doenças Priônicas , Príons , Deficiências na Proteostase , Humanos , Camundongos , Animais , Doenças Neurodegenerativas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Doença de Alzheimer/metabolismo , Doenças Neuroinflamatórias , Regulação para Baixo , Doença de Parkinson/metabolismo , Neurônios/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Príons/metabolismo , Inflamação/metabolismo , Deficiências na Proteostase/tratamento farmacológico , Deficiências na Proteostase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA