Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Annu Rev Biochem ; 88: 85-111, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30901263

RESUMO

Membrane proteins that exist in lipid bilayers are not isolated molecular entities. The lipid molecules that surround them play crucial roles in maintaining their full structural and functional integrity. Research directed at investigating these critical lipid-protein interactions is developing rapidly. Advancements in both instrumentation and software, as well as in key biophysical and biochemical techniques, are accelerating the field. In this review, we provide a brief outline of structural techniques used to probe protein-lipid interactions and focus on the molecular aspects of these interactions obtained from native mass spectrometry (native MS). We highlight examples in which lipids have been shown to modulate membrane protein structure and show how native MS has emerged as a complementary technique to X-ray crystallography and cryo-electron microscopy. We conclude with a short perspective on future developments that aim to better understand protein-lipid interactions in the native environment.


Assuntos
Glicerofosfolipídeos/metabolismo , Glicolipídeos/metabolismo , Espectrometria de Massas/métodos , Proteínas de Membrana/metabolismo , Esfingolipídeos/metabolismo , Esteróis/metabolismo , Bactérias/química , Bactérias/metabolismo , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Fungos/química , Fungos/metabolismo , Glicerofosfolipídeos/química , Glicolipídeos/química , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/instrumentação , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Esfingolipídeos/química , Esteróis/química
2.
Mol Cell ; 80(1): 72-86.e7, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910895

RESUMO

Membrane protein biogenesis faces the challenge of chaperoning hydrophobic transmembrane helices for faithful membrane insertion. The guided entry of tail-anchored proteins (GET) pathway targets and inserts tail-anchored (TA) proteins into the endoplasmic reticulum (ER) membrane with an insertase (yeast Get1/Get2 or mammalian WRB/CAML) that captures the TA from a cytoplasmic chaperone (Get3 or TRC40, respectively). Here, we present cryo-electron microscopy reconstructions, native mass spectrometry, and structure-based mutagenesis of human WRB/CAML/TRC40 and yeast Get1/Get2/Get3 complexes. Get3 binding to the membrane insertase supports heterotetramer formation, and phosphatidylinositol binding at the heterotetramer interface stabilizes the insertase for efficient TA insertion in vivo. We identify a Get2/CAML cytoplasmic helix that forms a "gating" interaction with Get3/TRC40 important for TA insertion. Structural homology with YidC and the ER membrane protein complex (EMC) implicates an evolutionarily conserved insertion mechanism for divergent substrates utilizing a hydrophilic groove. Thus, we provide a detailed structural and mechanistic framework to understand TA membrane insertion.


Assuntos
Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Complexos Multiproteicos/metabolismo , Linhagem Celular , Sequência Conservada , Evolução Molecular , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfatidilinositóis/metabolismo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nature ; 593(7857): 125-129, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33854236

RESUMO

Antibiotics that target Gram-negative bacteria in new ways are needed to resolve the antimicrobial resistance crisis1-3. Gram-negative bacteria are protected by an additional outer membrane, rendering proteins on the cell surface attractive drug targets4,5. The natural compound darobactin targets the bacterial insertase BamA6-the central unit of the essential BAM complex, which facilitates the folding and insertion of outer membrane proteins7-13. BamA lacks a typical catalytic centre, and it is not obvious how a small molecule such as darobactin might inhibit its function. Here we resolve the mode of action of darobactin at the atomic level using a combination of cryo-electron microscopy, X-ray crystallography, native mass spectrometry, in vivo experiments and molecular dynamics simulations. Two cyclizations pre-organize the darobactin peptide in a rigid ß-strand conformation. This creates a mimic of the recognition signal of native substrates with a superior ability to bind to the lateral gate of BamA. Upon binding, darobactin replaces a lipid molecule from the lateral gate to use the membrane environment as an extended binding pocket. Because the interaction between darobactin and BamA is largely mediated by backbone contacts, it is particularly robust against potential resistance mutations. Our results identify the lateral gate as a functional hotspot in BamA and will allow the rational design of antibiotics that target this bacterial Achilles heel.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia por Raios X , Desenho de Fármacos , Escherichia coli/citologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína
4.
Nat Methods ; 18(1): 69-75, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408407

RESUMO

Single-particle cryo-electron microscopy (cryo-EM) has become a powerful technique in the field of structural biology. However, the inability to reliably produce pure, homogeneous membrane protein samples hampers the progress of their structural determination. Here, we develop a bottom-up iterative method, Build and Retrieve (BaR), that enables the identification and determination of cryo-EM structures of a variety of inner and outer membrane proteins, including membrane protein complexes of different sizes and dimensions, from a heterogeneous, impure protein sample. We also use the BaR methodology to elucidate structural information from Escherichia coli K12 crude membrane and raw lysate. The findings demonstrate that it is possible to solve high-resolution structures of a number of relatively small (<100 kDa) and less abundant (<10%) unidentified membrane proteins within a single, heterogeneous sample. Importantly, these results highlight the potential of cryo-EM for systems structural proteomics.


Assuntos
Proteínas de Bactérias/química , Burkholderia pseudomallei/metabolismo , Membrana Celular/metabolismo , Microscopia Crioeletrônica/métodos , Proteínas de Membrana/química , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Escherichia coli/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
5.
Nat Methods ; 17(5): 505-508, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371966

RESUMO

Ligands bound to protein assemblies provide critical information for function, yet are often difficult to capture and define. Here we develop a top-down method, 'nativeomics', unifying 'omics' (lipidomics, proteomics, metabolomics) analysis with native mass spectrometry to identify ligands bound to membrane protein assemblies. By maintaining the link between proteins and ligands, we define the lipidome/metabolome in contact with membrane porins and a mitochondrial translocator to discover potential regulators of protein function.


Assuntos
Lipídeos/análise , Espectrometria de Massas/métodos , Proteínas de Membrana/metabolismo , Metaboloma , Proteoma/análise , Humanos , Ligantes
6.
Proc Natl Acad Sci U S A ; 117(29): 17011-17018, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636271

RESUMO

Few antibiotics are effective against Acinetobacter baumannii, one of the most successful pathogens responsible for hospital-acquired infections. Resistance to chlorhexidine, an antiseptic widely used to combat A. baumannii, is effected through the proteobacterial antimicrobial compound efflux (PACE) family. The prototype membrane protein of this family, AceI (Acinetobacter chlorhexidine efflux protein I), is encoded for by the aceI gene and is under the transcriptional control of AceR (Acinetobacter chlorhexidine efflux protein regulator), a LysR-type transcriptional regulator (LTTR) protein. Here we use native mass spectrometry to probe the response of AceI and AceR to chlorhexidine assault. Specifically, we show that AceI forms dimers at high pH, and that binding to chlorhexidine facilitates the functional form of the protein. Changes in the oligomerization of AceR to enable interaction between RNA polymerase and promoter DNA were also observed following chlorhexidine assault. Taken together, these results provide insight into the assembly of PACE family transporters and their regulation via LTTR proteins on drug recognition and suggest potential routes for intervention.


Assuntos
Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Clorexidina , Proteínas de Membrana Transportadoras , Acinetobacter baumannii/química , Acinetobacter baumannii/enzimologia , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clorexidina/química , Clorexidina/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Resistência Microbiana a Medicamentos , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(23): 11241-11246, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31113875

RESUMO

The cell envelope of Mycobacterium tuberculosis is notable for the abundance of mycolic acids (MAs), essential to mycobacterial viability, and of other species-specific lipids. The mycobacterial cell envelope is extremely hydrophobic, which contributes to virulence and antibiotic resistance. However, exactly how fatty acids and lipidic elements are transported across the cell envelope for cell-wall biosynthesis is unclear. Mycobacterial membrane protein Large 3 (MmpL3) is essential and required for transport of trehalose monomycolates (TMMs), precursors of MA-containing trehalose dimycolates (TDM) and mycolyl arabinogalactan peptidoglycan, but the exact function of MmpL3 remains elusive. Here, we report a crystal structure of Mycobacterium smegmatis MmpL3 at a resolution of 2.59 Å, revealing a monomeric molecule that is structurally distinct from all known bacterial membrane proteins. A previously unknown MmpL3 ligand, phosphatidylethanolamine (PE), was discovered inside this transporter. We also show, via native mass spectrometry, that MmpL3 specifically binds both TMM and PE, but not TDM, in the micromolar range. These observations provide insight into the function of MmpL3 and suggest a possible role for this protein in shuttling a variety of lipids to strengthen the mycobacterial cell wall.


Assuntos
Proteínas de Bactérias/metabolismo , Fatores Corda/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfatidiletanolaminas/metabolismo , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Mycobacterium smegmatis/metabolismo , Ácidos Micólicos/metabolismo
8.
Plant J ; 102(6): 1107-1126, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32168387

RESUMO

Microalgae and cyanobacteria contribute roughly half of the global photosynthetic carbon assimilation. Faced with limited access to CO2 in aquatic environments, which can vary daily or hourly, these microorganisms have evolved use of an efficient CO2 concentrating mechanism (CCM) to accumulate high internal concentrations of inorganic carbon (Ci ) to maintain photosynthetic performance. For eukaryotic algae, a combination of molecular, genetic and physiological studies using the model organism Chlamydomonas reinhardtii, have revealed the function and molecular characteristics of many CCM components, including active Ci uptake systems. Fundamental to eukaryotic Ci uptake systems are Ci transporters/channels located in membranes of various cell compartments, which together facilitate the movement of Ci from the environment into the chloroplast, where primary CO2 assimilation occurs. Two putative plasma membrane Ci transporters, HLA3 and LCI1, are reportedly involved in active Ci uptake. Based on previous studies, HLA3 clearly plays a meaningful role in HCO3- transport, but the function of LCI1 has not yet been thoroughly investigated so remains somewhat obscure. Here we report a crystal structure of the full-length LCI1 membrane protein to reveal LCI1 structural characteristics, as well as in vivo physiological studies in an LCI1 loss-of-function mutant to reveal the Ci species preference for LCI1. Together, these new studies demonstrate LCI1 plays an important role in active CO2 uptake and that LCI1 likely functions as a plasma membrane CO2 channel, possibly a gated channel.


Assuntos
Proteínas de Algas/metabolismo , Dióxido de Carbono/metabolismo , Membrana Celular/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Algas/química , Proteínas de Membrana Transportadoras/química , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína
9.
Angew Chem Int Ed Engl ; 59(9): 3523-3528, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31886601

RESUMO

Membrane proteins engage in a variety of contacts with their surrounding lipids, but distinguishing between specifically bound lipids, and non-specific, annular interactions is a challenging problem. Applying native mass spectrometry to three membrane protein complexes with different lipid-binding properties, we explore the ability of detergents to compete with lipids bound in different environments. We show that lipids in annular positions on the presenilin homologue protease are subject to constant exchange with detergent. By contrast, detergent-resistant lipids bound at the dimer interface in the leucine transporter show decreased koff rates in molecular dynamics simulations. Turning to the lipid flippase MurJ, we find that addition of the natural substrate lipid-II results in the formation of a 1:1 protein-lipid complex, where the lipid cannot be displaced by detergent from the highly protected active site. In summary, we distinguish annular from non-annular lipids based on their exchange rates in solution.


Assuntos
Lipídeos/química , Espectrometria de Massas , Proteínas de Membrana/química , Cardiolipinas/química , Cardiolipinas/metabolismo , Detergentes/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Methanomicrobiaceae/metabolismo , Simulação de Dinâmica Molecular , Presenilinas/química , Presenilinas/metabolismo , Ligação Proteica
10.
J Biol Chem ; 290(47): 28559-28574, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26396194

RESUMO

The mycobacterial cell wall is critical to the virulence of these pathogens. Recent work shows that the MmpL (mycobacterial membrane protein large) family of transporters contributes to cell wall biosynthesis by exporting fatty acids and lipidic elements of the cell wall. The expression of the Mycobacterium tuberculosis MmpL proteins is controlled by a complex regulatory network, including the TetR family transcriptional regulators Rv3249c and Rv1816. Here we report the crystal structures of these two regulators, revealing dimeric, two-domain molecules with architecture consistent with the TetR family of regulators. Buried extensively within the C-terminal regulatory domains of Rv3249c and Rv1816, we found fortuitous bound ligands, which were identified as palmitic acid (a fatty acid) and isopropyl laurate (a fatty acid ester), respectively. Our results suggest that fatty acids may be the natural ligands of these regulatory proteins. Using fluorescence polarization and electrophoretic mobility shift assays, we demonstrate the recognition of promoter and intragenic regions of multiple mmpL genes by these proteins. Binding of palmitic acid renders these regulators incapable of interacting with their respective operator DNAs, which will result in derepression of the corresponding mmpL genes. Taken together, these experiments provide new perspectives on the regulation of the MmpL family of transporters.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Proteínas de Membrana Transportadoras/química , Conformação Proteica
11.
J Biol Chem ; 289(23): 16526-40, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24737322

RESUMO

Recent work demonstrates that the MmpL (mycobacterial membrane protein large) transporters are dedicated to the export of mycobacterial lipids for cell wall biosynthesis. An MmpL transporter frequently works with an accessory protein, belonging to the MmpS (mycobacterial membrane protein small) family, to transport these key virulence factors. One such efflux system in Mycobacterium tuberculosis is the MmpS5-MmpL5 transporter. The expression of MmpS5-MmpL5 is controlled by the MarR-like transcriptional regulator Rv0678, whose open reading frame is located downstream of the mmpS5-mmpL5 operon. To elucidate the structural basis of Rv0678 regulation, we have determined the crystal structure of this regulator, to 1.64 Å resolution, revealing a dimeric two-domain molecule with an architecture similar to members of the MarR family of transcriptional regulators. Rv0678 is distinct from other MarR regulators in that its DNA-binding and dimerization domains are clustered together. These two domains seemingly cooperate to bind an inducing ligand that we identified as 2-stearoylglycerol, which is a fatty acid glycerol ester. The structure also suggests that the conformational change leading to substrate-mediated derepression is primarily caused by a rigid body rotational motion of the entire DNA-binding domain of the regulator toward the dimerization domain. This movement results in a conformational state that is incompatible with DNA binding. We demonstrate using electrophoretic mobility shift assays that Rv0678 binds to the mmpS5-mmpL5, mmpS4-mmpL4, and the mmpS2-mmpL2 promoters. Binding by Rv0678 was reversed upon the addition of the ligand. These findings provide new insight into the mechanisms of gene regulation in the MarR family of regulators.


Assuntos
Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , Primers do DNA , Dimerização , Dados de Sequência Molecular , Mycobacterium tuberculosis/química , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos
12.
Nucleic Acids Res ; 40(18): 9340-55, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22821564

RESUMO

The Mmr multidrug efflux pump recognizes and actively extrudes a broad range of antimicrobial agents, and promotes the intrinsic resistance to these antimicrobials in Mycobacterium tuberculosis. The expression of Mmr is controlled by the TetR-like transcriptional regulator Rv3066, whose open reading frame is located downstream of the mmr operon. To understand the structural basis of Rv3066 regulation, we have determined the crystal structures of Rv3066, both in the absence and presence of bound ethidium, revealing an asymmetric homodimeric two-domain molecule with an entirely helical architecture. The structures underscore the flexibility and plasticity of the regulator essential for multidrug recognition. Comparison of the apo-Rv3066 and Rv3066-ethidium crystal structures suggests that the conformational changes leading to drug-mediated derepression is primarily due to a rigid body rotational motion within the dimer interface of the regulator. The Rv3066 regulator creates a multidrug-binding pocket, which contains five aromatic residues. The bound ethidium is found buried within the multidrug-binding site, where extensive aromatic stacking interactions seemingly govern the binding. In vitro studies reveal that the dimeric Rv3066 regulator binds to a 14-bp palindromic inverted repeat sequence in the nanomolar range. These findings provide new insight into the mechanisms of ligand binding and Rv3066 regulation.


Assuntos
Proteínas de Bactérias/química , Mycobacterium tuberculosis , Proteínas Repressoras/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cromatografia em Gel , Pegada de DNA , Proteínas de Ligação a DNA/química , Farmacorresistência Bacteriana Múltipla , Ensaio de Desvio de Mobilidade Eletroforética , Etídio/química , Polarização de Fluorescência , Sequências Repetidas Invertidas , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Regiões Promotoras Genéticas , Conformação Proteica , Proteínas Repressoras/metabolismo , Transcrição Gênica/efeitos dos fármacos
13.
PLoS One ; 16(10): e0256070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653190

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is a significant pathogen in respiratory disease and otitis media. Important for NTHi survival, colonization and persistence in vivo is the Sap (sensitivity to antimicrobial peptides) ABC transporter system. Current models propose a direct role for Sap in heme and antimicrobial peptide (AMP) transport. Here, the crystal structure of SapA, the periplasmic component of Sap, in a closed, ligand bound conformation, is presented. Phylogenetic and cavity volume analysis predicts that the small, hydrophobic SapA central ligand binding cavity is most likely occupied by a hydrophobic di- or tri- peptide. The cavity is of insufficient volume to accommodate heme or folded AMPs. Crystal structures of SapA have identified surface interactions with heme and dsRNA. Heme binds SapA weakly (Kd 282 µM) through a surface exposed histidine, while the dsRNA is coordinated via residues which constitute part of a conserved motif (estimated Kd 4.4 µM). The RNA affinity falls within the range observed for characterized RNA/protein complexes. Overall, we describe in molecular-detail the interactions of SapA with heme and dsRNA and propose a role for SapA in the transport of di- or tri-peptides.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte/metabolismo , Haemophilus influenzae/metabolismo , Heme/metabolismo , RNA de Cadeia Dupla/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Antibacterianos/farmacologia , Proteínas de Transporte/genética , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/patologia , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/genética , Otite Média/microbiologia , Otite Média/patologia , Conformação Proteica , Transporte Proteico/fisiologia , RNA de Cadeia Dupla/genética , Motivos de Ligação ao RNA/genética , Fatores de Virulência/metabolismo
14.
Nat Commun ; 11(1): 564, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992701

RESUMO

Detergents enable the purification of membrane proteins and are indispensable reagents in structural biology. Even though a large variety of detergents have been developed in the last century, the challenge remains to identify guidelines that allow fine-tuning of detergents for individual applications in membrane protein research. Addressing this challenge, here we introduce the family of oligoglycerol detergents (OGDs). Native mass spectrometry (MS) reveals that the modular OGD architecture offers the ability to control protein purification and to preserve interactions with native membrane lipids during purification. In addition to a broad range of bacterial membrane proteins, OGDs also enable the purification and analysis of a functional G-protein coupled receptor (GPCR). Moreover, given the modular design of these detergents, we anticipate fine-tuning of their properties for specific applications in structural biology. Seen from a broader perspective, this represents a significant advance for the investigation of membrane proteins and their interactions with lipids.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Detergentes/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Espectrometria de Massas , Lipídeos de Membrana , Modelos Moleculares , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação , Redobramento de Proteína , Solubilidade
15.
Nat Protoc ; 15(5): 1690-1706, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32238951

RESUMO

Recent applications of mass spectrometry (MS) to study membrane protein complexes are yielding valuable insights into the binding of lipids and their structural and functional roles. To date, most native MS experiments with membrane proteins are based on detergent solubilization. Many insights into the structure and function of membrane proteins have been obtained using detergents; however, these can promote local lipid rearrangement and can cause fluctuations in the oligomeric state of protein complexes. To overcome these problems, we developed a method that does not use detergents or other chemicals. Here we report a detailed protocol that enables direct ejection of protein complexes from membranes for analysis by native MS. Briefly, lipid vesicles are prepared directly from membranes of different sources and subjected to sonication pulses. The resulting destabilized vesicles are concentrated, introduced into a mass spectrometer and ionized. The mass of the observed protein complexes is determined and this information, in conjunction with 'omics'-based strategies, is used to determine subunit stoichiometry as well as cofactor and lipid binding. Within this protocol, we expand the applications of the method to include peripheral membrane proteins of the S-layer and amyloid protein export machineries overexpressed in membranes from which the most abundant components have been removed. The described experimental procedure takes approximately 3 d from preparation to MS. The time required for data analysis depends on the complexity of the protein assemblies embedded in the membrane under investigation.


Assuntos
Espectrometria de Massas/métodos , Proteínas de Membrana/análise , Vesículas Citoplasmáticas , Sonicação
16.
Structure ; 27(4): 651-659.e3, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30799075

RESUMO

The molybdate importer (ModBC-A of Archaeoglobus fulgidus) and the vitamin B12 importer (BtuCD-F of Escherichia coli) are members of the type I and type II ABC importer families. Here we study the influence of substrate and nucleotide binding on complex formation and stability. Using native mass spectrometry we show that the interaction between the periplasmic substrate-binding protein (SBP) ModA and the transporter ModBC is dependent upon binding of molybdate. By contrast, vitamin B12 disrupts interactions between the transporter BtuCD and the SBP BtuF. Moreover, while ATP binds cooperatively to BtuCD-F, and acts synergistically with vitamin B12 to destabilize the BtuCD-F complex, no effect is observed for ATP binding on the stability of ModBC-A. These observations not only highlight the ability of mass spectrometry to capture these importer-SBP complexes but allow us to add molecular detail to proposed transport mechanisms.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/química , Archaeoglobus fulgidus/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Molibdênio/química , Proteínas Periplásmicas de Ligação/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Archaeoglobus fulgidus/genética , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Transporte de Íons , Modelos Moleculares , Molibdênio/metabolismo , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por Substrato
17.
Nat Chem ; 10(3): 363-371, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29461535

RESUMO

Translocation of lipid II across the cytoplasmic membrane is essential in peptidoglycan biogenesis. Although most steps are understood, identifying the lipid II flippase has yielded conflicting results, and the lipid II binding properties of two candidate flippases-MurJ and FtsW-remain largely unknown. Here we apply native mass spectrometry to both proteins and characterize lipid II binding. We observed lower levels of lipid II binding to FtsW compared to MurJ, consistent with MurJ having a higher affinity. Site-directed mutagenesis of MurJ suggests that mutations at A29 and D269 attenuate lipid II binding to MurJ, whereas chemical modification of A29 eliminates binding. The antibiotic ramoplanin dissociates lipid II from MurJ, whereas vancomycin binds to form a stable complex with MurJ:lipid II. Furthermore, we reveal cardiolipins associate with MurJ but not FtsW, and exogenous cardiolipins reduce lipid II binding to MurJ. These observations provide insights into determinants of lipid II binding to MurJ and suggest roles for endogenous lipids in regulating substrate binding.


Assuntos
Antibacterianos/química , Cardiolipinas/química , Depsipeptídeos/química , Proteínas de Escherichia coli/química , Proteínas de Transferência de Fosfolipídeos/química , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cardiolipinas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/química
18.
Nat Commun ; 8(1): 171, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28761097

RESUMO

Resistance-nodulation-cell division efflux pumps are integral membrane proteins that catalyze the export of substrates across cell membranes. Within the hydrophobe-amphiphile efflux subfamily, these resistance-nodulation-cell division proteins largely form trimeric efflux pumps. The drug efflux process has been proposed to entail a synchronized motion between subunits of the trimer to advance the transport cycle, leading to the extrusion of drug molecules. Here we use X-ray crystallography and single-molecule fluorescence resonance energy transfer imaging to elucidate the structures and functional dynamics of the Campylobacter jejuni CmeB multidrug efflux pump. We find that the CmeB trimer displays a very unique conformation. A direct observation of transport dynamics in individual CmeB trimers embedded in membrane vesicles indicates that each CmeB subunit undergoes conformational transitions uncoordinated and independent of each other. On the basis of our findings and analyses, we propose a model for transport mechanism where CmeB protomers function independently within the trimer.Multidrug efflux pumps significantly contribute for bacteria resistance to antibiotics. Here the authors present the structure of Campylobacter jejuni CmeB pump combined with functional FRET assays to propose a transport mechanism where each CmeB protomers is functionally independent from the trimer.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Bactérias/genética , Campylobacter jejuni/genética , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla/genética , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana Transportadoras/genética , Conformação Proteica , Estrutura Secundária de Proteína
19.
Nat Commun ; 7: 12837, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27667267

RESUMO

CD36 is a scavenger receptor involved in fatty acid metabolism, innate immunity and angiogenesis. It interacts with lipoprotein particles and facilitates uptake of long chain fatty acids. It is also the most common target of the PfEMP1 proteins of the malaria parasite, Plasmodium falciparum, tethering parasite-infected erythrocytes to endothelial receptors. This prevents their destruction by splenic clearance and allows increased parasitaemia. Here we describe the structure of CD36 in complex with long chain fatty acids and a CD36-binding PfEMP1 protein domain. A conserved hydrophobic pocket allows the hugely diverse PfEMP1 protein family to bind to a conserved phenylalanine residue at the membrane distal tip of CD36. This phenylalanine is also required for CD36 to interact with lipoprotein particles. By targeting a site on CD36 that is required for its physiological function, PfEMP1 proteins maintain the ability to tether to the endothelium and avoid splenic clearance.

20.
Methods Enzymol ; 557: 363-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25950974

RESUMO

X-ray crystallography remains the most robust method to determine protein structure at the atomic level. However, the bottlenecks of protein expression and purification often discourage further study. In this chapter, we address the most common problems encountered at these stages. Based on our experiences in expressing and purifying antimicrobial efflux proteins, we explain how a pure and homogenous protein sample can be successfully crystallized by the vapor diffusion method. We present our current protocols and methodologies for this technique. Case studies show step-by-step how we have overcome problems related to expression and diffraction, eventually producing high-quality membrane protein crystals for structural determinations. It is our hope that a rational approach can be made of the often anecdotal process of membrane protein crystallization.


Assuntos
Cristalografia por Raios X/métodos , Proteínas de Membrana/química , Animais , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Detergentes/química , Difusão , Expressão Gênica , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Modelos Moleculares , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA