Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 95(9): 3133-3136, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363510

RESUMO

The EU chemicals strategy for sustainability (CSS) asserts that both human health and the environment are presently threatened and that further regulation is necessary. In a recent Guest Editorial, members of the German competent authority for risk assessment, the BfR, raised concerns about the scientific justification for this strategy. The complexity and interdependence of the networks of regulation of chemical substances have ensured that public health and wellbeing in the EU have continuously improved. A continuous process of improvement in consumer protection is clearly desirable but any initiative directed towards this objective must be based on scientific knowledge. It must not confound risk with other factors in determining policy. This conclusion is fully supported in the present Commentary including the request to improve both, data collection and the time-consuming and bureaucratic procedures that delay the publication of regulations.


Assuntos
Saúde Pública/legislação & jurisprudência , Medição de Risco/legislação & jurisprudência , União Europeia , Substâncias Perigosas/toxicidade , Política de Saúde/legislação & jurisprudência , Humanos
2.
Arch Toxicol ; 94(7): 2549-2557, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32514609

RESUMO

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Exposição Dietética/efeitos adversos , Disruptores Endócrinos/efeitos adversos , Sistema Endócrino/efeitos dos fármacos , Compostos Fitoquímicos/efeitos adversos , Testes de Toxicidade , Animais , Disruptores Endócrinos/síntese química , Sistema Endócrino/metabolismo , Sistema Endócrino/fisiopatologia , Humanos , Ligantes , Medição de Risco
3.
J Toxicol Environ Health A ; 83(13-14): 485-494, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32552445

RESUMO

Theoretically, both synthetic endocrine-disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine-disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower than S-EDCs. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea, and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Disruptores Endócrinos/síntese química , Disruptores Endócrinos/toxicidade , Exposição Ambiental/análise , Disruptores Endócrinos/metabolismo , Sistema Endócrino/efeitos dos fármacos , Sistema Endócrino/fisiologia , Exposição Ambiental/estatística & dados numéricos , Retroalimentação Fisiológica/efeitos dos fármacos , Hormônios/metabolismo , Humanos , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Medição de Risco , Testes de Toxicidade/normas
4.
Chem Biol Interact ; 326: 109099, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370863

RESUMO

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Disruptores Endócrinos/efeitos adversos , Sistema Endócrino/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Animais , Humanos
5.
Toxicol In Vitro ; 67: 104861, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32360643

RESUMO

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Disruptores Endócrinos/toxicidade , Exposição Ambiental , Poluentes Ambientais/toxicidade , Hormônios/metabolismo , Sistema Endócrino , Humanos , Receptores de Superfície Celular/metabolismo , Medição de Risco
6.
Food Chem Toxicol ; 142: 111349, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32360905

RESUMO

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Exposição Dietética , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Humanos , Medição de Risco
7.
Environ Toxicol Pharmacol ; 78: 103396, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32391796

RESUMO

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Assuntos
Produtos Biológicos/toxicidade , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Sistema Endócrino/efeitos dos fármacos , Exposição Ambiental , Hormônios , Humanos , Receptores de Esteroides/metabolismo , Medição de Risco
10.
Toxicology ; 207(2): 255-69, 2005 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-15596256

RESUMO

Consumption of tobacco products is the most relevant risk factor for the development of bladder cancer beside occupational contributions. In order to investigate mechanisms of tobacco smoke components in bladder carcinogenesis we have introduced a primary epithelial cell culture system derived from porcine urinary bladder as a suitable representative for the corresponding human tissue under physiological conditions. Two independent readouts were selected as markers for genotoxic events. Changes in the expression level of several toxicologically relevant genes should serve as indicators for early response, while classical genotoxic endpoints monitored manifested damages. Here, we present the first results of our study with benzo(a)pyrene (BaP) as a member of polycyclic aromatic hydrocarbons (PAHs) found in tobacco smoke. Cells treated with BaP show a dramatic increase in the expression of CYP1A1 that appears to be both indicator of and contributor for BaP toxicity. Genes coding for other proteins relevant in xenobiotic metabolism, signal transduction or tumor suppression show moderate effects or no enhancement of their expression levels. Comet assay and micronucleus test did show a significant, dose-dependent increase in DNA damages or aberrations after cell division. While these effects are conforming to the response at the mRNA expression level, they are less pronounced and require rather higher dosages of the chemical.


Assuntos
Poluentes Atmosféricos/toxicidade , Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Citocromo P-450 CYP1A1/biossíntese , Células Epiteliais/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos , Animais , Células Cultivadas , Ensaio Cometa , Citocromo P-450 CYP1A1/genética , Dano ao DNA , Relação Dose-Resposta a Droga , Células Epiteliais/enzimologia , Regulação Enzimológica da Expressão Gênica , Testes para Micronúcleos , Fumar , Suínos , Bexiga Urinária/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA