Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Am Chem Soc ; 146(27): 18387-18395, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38904843

RESUMO

Flexible metal-organic materials (FMOMs) with stepped isotherms can offer enhanced working capacity in storage applications such as adsorbed natural gas (ANG) storage. Unfortunately, whereas >1000 FMOMs are known, only a handful exhibit methane uptake of >150 cm3/cm3 at 65 atm and 298 K, conditions relevant to ANG. Here, we report a double-walled 2-fold interpenetrated diamondoid (dia) network, X-dia-6-Ni, [Ni2L4(µ-H2O)]n, comprising a new azo linker ligand, L- (L- = (E)-3-(pyridin-4-yldiazenyl)benzoate) and 8-connected dinuclear molecular building blocks. X-dia-6-Ni exhibited gas (CO2, N2, CH4) and liquid (C8 hydrocarbons)-induced reversible transformations between its activated narrow-pore ß phase and γ, a large-pore phase with ca. 33% increase in unit cell volume. Single-crystal X-ray diffraction (SCXRD) studies of the as-synthesized phase α, ß, and γ revealed that structural transformations were enabled by twisting of the azo moiety and/or deformation of the MBB. Further insight into these transformations was gained from variable temperature powder XRD and in situ variable pressure powder XRD. Low-temperature N2 and CO2 sorption revealed stepped Type F-II isotherms with saturation uptakes of 422 and 401 cm3/g, respectively. X-dia-6-Ni exhibited uptake of 200 cm3/cm3 (65 atm, 298 K) and a high CH4 working capacity of 166 cm3/cm3 (5-65 bar, 298 K, 33 cycles), the third highest value yet reported for an FMOM and the highest value for an FMOM with a Type F-II isotherm.

2.
Inorg Chem ; 63(23): 10843-10853, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38810089

RESUMO

Synthesis and characterization of DEMOFs (defect-engineered metal-organic frameworks) with coordinatively unsaturated sites (CUSs) for gas adsorption, catalysis, and separation are reported. We use the mixed-linker approach to introduce defects in Cu2-paddle wheel units of MOFs [Cu2(Me-trz-ia)2] by replacing up to 7% of the 3-methyl-triazolyl isophthalate linker (1L2-) with the "defective linker" 3-methyl-triazolyl m-benzoate (2L-), causing uncoordinated equatorial sites. PXRD of DEMOFs shows broadened reflections; IR and Raman analysis demonstrates only marginal changes as compared to the regular MOF (ReMOF, without a defective linker). The concentration of the integrated defective linker in DEMOFs is determined by 1H NMR and HPLC, while PXRD patterns reveal that DEMOFs maintain phase purity and crystallinity. Combined XPS (X-ray photoelectron spectroscopy) and cw EPR (continuous wave electron paramagnetic resonance) spectroscopy analyses provide insights into the local structure of defective sites and charge balance, suggesting the presence of two types of defects. Notably, an increase in CuI concentration is observed with incorporation of defective linkers, correlating with the elevated isosteric heat of adsorption (ΔHads). Overall, this approach offers valuable insights into the creation and evolution of CUSs within MOFs through the integration of defective linkers.

3.
Angew Chem Int Ed Engl ; : e202404084, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38863431

RESUMO

Stimuli-responsive physisorbents that undergo reversible structural transformations induced by external stimuli (e.g. light, guests, or heat) offer the promise of utility in gas storage and separation. Whereas reports on guest or light-responsive sorbents have increased in recent years, we are unaware of reports on sorbents that exhibit both light and guest-induced structural transformations. Herein, we report that the square lattice, sql, topology coordination network Zn(fba)(bis) ⋅ 2DMF (sql-5,6-Zn-α, 5=trans-4,4'-bis(1-imidazolyl)stilbene=bis, 6=2,2-bis(4-carboxyphenyl)hexafluoropropane=H2fba) underwent single-crystal-to-single-crystal transformation (SCSC) upon activation, affording nonporous sql-5,6-Zn-ß. Parallel alignment at 3.23 Šof olefinic moieties on adjacent bis ligands in sql-5,6-Zn-α enabled SCSC [2+2] photocycloaddition upon exposure to UV light (365 nm) or sunlight. sql-5,6-Zn-α thereby transformed to mot-5,6-Zn-α, which was subsequently activated to the narrow pore phase mot-5,6-Zn-ß. sql-5,6-Zn-ß and mot-5,6-Zn-ß both exhibited S-shaped adsorption isotherms characteristic of guest-induced structural changes when exposed to CO2 at 195 K (type-F-IV and type F-I, respectively). Cycling experiments conducted upon sql-5,6-Zn-ß reduced particle size after cycle 1 and induced transformation into a rare example of a shape memory coordination network, sql-5,6-Zn-γ. Insight into this smorgasbord of SCSC phase changes was gained from in situ PXRD, single crystal XRD and 1H NMR spectroscopy experiments.

4.
Angew Chem Int Ed Engl ; 63(30): e202402973, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644341

RESUMO

Metal-Organic Frameworks can be grafted with amines by coordination to metal vacancies to create amine-appended solid adsorbents, which are being considered as an alternative to using aqueous amine solutions for CO2 capture. In this study, we propose an alternative mechanism that does not rely on the use of neutral metal vacancies as binding sites but is enabled by the structural adaptability of heterobimetallic Ti2Ca2 clusters. The combination of hard (Ti4+) and soft (Ca2+) metal centers in the inorganic nodes of the framework enables MUV-10 to adapt its pore windows to the presence of triethylenetetramine molecules. This dynamic cluster response facilitates the translocation and binding of tetraamine inside the microporous cavities to enable the formation of bis-coordinate adducts that are stable in water. The extension of this grafting concept from MUV-10 to larger cavities not restrictive to CO2 diffusion will complement other strategies available for the design of molecular sorbents for decarbonization applications.

5.
Angew Chem Int Ed Engl ; 62(20): e202218052, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808409

RESUMO

Molecular machines and responsive materials open a plethora of new opportunities in nanotechnology. We present an oriented crystalline array of diarylethene (DAE)-based photoactuators, arranged in a way to yield an anisotropic response. The DAE units are assembled, together with a secondary linker, into a monolithic surface-mounted metal-organic framework (SURMOF) film. By Infrared (IR) and UV/Vis spectroscopy as well as by synchrotron X-ray diffraction, we show that the light-induced extension changes of the molecular DAE linkers multiply to yield mesoscopic and anisotropic length changes. Due to the special architecture and substrate-bonding of the SURMOF, these length changes are transferred to the macroscopic scale, leading to the bending of a cantilever and performing work. This research shows the potential of assembling light-powered molecules into SURMOFs to yield photoactuators with a directed response, presenting a path to advanced actuators.

6.
Angew Chem Int Ed Engl ; 62(33): e202218076, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37052183

RESUMO

Flexible porous frameworks are at the forefront of materials research. A unique feature is their ability to open and close their pores in an adaptive manner induced by chemical and physical stimuli. Such enzyme-like selective recognition offers a wide range of functions ranging from gas storage and separation to sensing, actuation, mechanical energy storage and catalysis. However, the factors affecting switchability are poorly understood. In particular, the role of building blocks, as well as secondary factors (crystal size, defects, cooperativity) and the role of host-guest interactions, profit from systematic investigations of an idealized model by advanced analytical techniques and simulations. The review describes an integrated approach targeting the deliberate design of pillared layer metal-organic frameworks as idealized model materials for the analysis of critical factors affecting framework dynamics and summarizes the resulting progress in their understanding and application.

7.
J Am Chem Soc ; 144(20): 9101-9112, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35543441

RESUMO

Dithiine linkage formation via a dynamic and self-correcting nucleophilic aromatic substitution reaction enables the de novo synthesis of a porous thianthrene-based two-dimensional covalent organic framework (COF). For the first time, this organo-sulfur moiety is integrated as a structural building block into a crystalline layered COF. The structure of the new material deviates from the typical planar interlayer π-stacking of the COF to form undulated layers caused by bending along the C-S-C bridge, without loss of aromaticity and crystallinity of the overall COF structure. Comprehensive experimental and theoretical investigations of the COF and a model compound, featuring the thianthrene moiety, suggest partial delocalization of sulfur lone pair electrons over the aromatic backbone of the COF decreasing the band gap and promoting redox activity. Postsynthetic sulfurization allows for direct covalent attachment of polysulfides to the carbon backbone of the framework to afford a molecular-designed cathode material for lithium-sulfur (Li-S) batteries with a minimized polysulfide shuttle. The fabricated coin cell delivers nearly 77% of the initial capacity even after 500 charge-discharge cycles at 500 mA/g current density. This novel sulfur linkage in COF chemistry is an ideal structural motif for designing model materials for studying advanced electrode materials for Li-S batteries on a molecular level.

8.
Chemistry ; 28(59): e202202255, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35899822

RESUMO

We present an autonomous, chemical logic gate based on a switchable metal-organic framework (MOF) composite, containing carbon nanoparticles and a Pt catalyst. The switchable MOF composite performs as AND logic gate. Hydrogen and oxygen gas streams serve as binary inputs. Catalytically formed water induces a structural transition (crystal volume expansion) of the MOF, and as a consequence, a detectable drop in conductance of the composite as a 'true' output only if both gases come in contact with the composite.

9.
Chemistry ; 28(55): e202201281, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35802315

RESUMO

DUT-8(Ni) metal-organic framework (MOF) belongs to the family of flexible pillared layer materials. The desolvated framework can be obtained in the open pore form (op) or in the closed pore form (cp), depending on the crystal size regime. In the present work, we report on the behaviour of desolvated DUT-8(Ni) at elevated temperatures. For both, op and cp variants, heating causes a structural transition, leading to a new, crystalline compound, containing two interpenetrated networks. The state of the framework before transition (op vs. cp) influences the transition temperature: the small particles of the op phase transform at significantly lower temperature in comparison to the macroparticles of the cp phase, transforming close to the decomposition temperature. The new compound, confined closed pore phase (ccp), was characterized by powder X-ray diffraction and spectroscopic techniques, such as IR, EXAFS, and positron annihilation lifetime spectroscopy (PALS). Thermal effects of structural transitions were studied using differential scanning calorimetry (DSC), showing an overall exothermic effect of the process, involving bond breaking and reformation. Theoretical calculations reveal the energetics, driving the observed temperature induced phase transition.

10.
Nature ; 532(7599): 348-52, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27049950

RESUMO

Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

11.
J Am Chem Soc ; 143(44): 18368-18373, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34726056

RESUMO

Isoreticular chemically stable two-dimensional imine covalent organic frameworks (COFs), further denoted as DUT-175 and DUT-176, are obtained in a reaction of 4,4'-bis(9H-carbazol-9-yl)biphenyl tetraaldehyde with phenyldiamine and benzidine. The crystal structures, solved and refined from the powder X-ray diffraction data and confirmed by high-resolution transmission electron microscopy, indicate AA-stacked layer structures. Both structures feature distorted hexagonal channel pores, assuring remarkable porosity (SBET = 1071 m2 g-1 for DUT-175 and SBET = 1062 m2 g-1 for DUT-176), as confirmed by adsorption of gases and vapors. The complex conjugated π system of the COFs involves electron-rich carbazole building units, which in combination with the imine groups allow reversible pH-dependent protonation of the frameworks, accompanied by charge transfer and shift of the absorption bands in the UV-vis spectrum. The sigmoidal shape of the water vapor adsorption and desorption isotherms with a steep adsorption step at p/p0 = 0.4-0.6 in combination with excellent stability over dozens of adsorption and desorption cycles ranks these COFs among the best materials for indoor humidity control applications.

12.
Chemistry ; 27(37): 9708-9715, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-33871114

RESUMO

The switching mechanism of the flexible framework Zn4 O(benztb)1.5 (benztb=N,N,N',N'-benzidine tetrabenzoate), also known as DUT-13, was studied by advanced powder X-ray diffraction (PXRD) and gas physisorption techniques. In situ synchrotron PXRD experiments upon physisorption of nitrogen (77 K) and n-butane (273 K) shed light on the hitherto unnoticed guest-induced breathing in the MOF. The mechanism of contraction is based on the conformationally labile benztb ligand and accompanied by a reduction in specific pore volume from 2.03 cm3 g-1 in the open-pore phase to 0.91 cm3 g-1 in the contracted-pore phase. The high temperature limit for adsorption-induced contraction of 170 K, determined by systematic temperature variation of methane adsorption isotherms, indicates that the DUT-13 framework is softer than other mesoporous MOFs like DUT-49 and does not support the formation of overloaded metastable states required for negative gas-adsorption transitions.

13.
Langmuir ; 37(14): 4222-4226, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33797923

RESUMO

New advanced adsorbents are a crucial driver for the development of energy and environmental applications. Tremendous potential is provided by machine learning and data mining techniques, as these approaches can identify the most appropriate adsorbent for a particular application. However, the current scientific reporting of adsorption isotherms in graphs and figures is not adequate to reproduce original experimentally measured data. This report proposes the specification of a new standard adsorption information file (AIF) inspired by the ubiquitous crystallographic information file (CIF) and based on the self-defining text archive and retrieval (STAR) procedure, also used to represent biological nuclear magnetic resonance experiments (NMR-STAR). The AIF is a flexible and easily extended free-format archive file that is readily human and machine readable and is simple to edit using a basic text editor or parse for database curation. This format represents the first steps toward an open adsorption data format as a basis for a decentralized adsorption data library. An open format facilitates the electronic transmission of adsorption data between laboratories, journals, and larger databases, which is key in the effort to increase open science in the field of porous materials in the future.

14.
Faraday Discuss ; 225(0): 168-183, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33118556

RESUMO

Unusual adsorption phenomena, such as breathing and negative gas adsorption (NGA), are rare and challenge our thermodynamic understanding of adsorption in deformable porous solids. In particular, NGA appears to break the rules of thermodynamics in these materials by exhibiting a spontaneous release of gas accompanying an increase in pressure. This anomaly relies on long-lived metastable states. A fundamental understanding of this process is desperately required for the discovery of new materials with this exotic property. Interestingly, NGA was initially observed upon adsorption of methane at relatively low temperature, close to the respective standard boiling point of the adsorptive, and no NGA was observed at elevated temperatures. In this contribution, we present an extensive investigation of adsorption of an array of gases at various temperatures on DUT-49, a material which features an NGA transition. Experiments, featuring a wide range of gases and vapors at temperatures ranging from 21-308 K, were used to identify for each guest a critical temperature range in which NGA can be detected. The experimental results were complemented by molecular simulations that help to rationalize the absence of NGA at elevated temperatures, and the non-monotonic behavior present upon temperature decrease. Furthermore, this in-depth analysis highlights the crucial thermodynamic and kinetic conditions for NGA, which are unique to each guest and potentially other solids with similar effects. We expect this exploration to provide detailed guidelines for experimentally discovering NGA and related "rule breaking" phenomena in novel and already known materials, and provide the conditions required for the application of this effect, for example as pressure amplifying materials.

15.
Inorg Chem ; 60(3): 1726-1737, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439006

RESUMO

Linker elongation is an important method to systematically adjust porosity and pore size in isoreticular MOFs. In flexible structures, this approach opens the possibility for the systematic analysis of the building blocks and their contribution to the overall flexible behavior enabling tuning of the framework responsivity toward molecular stimuli. In this work, we report two new compounds isoreticular to the highly flexible pillared layer structure DUT-8(Ni) ([Ni2(2,6-ndc)2(dabco)]n, 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicylo[2.2.2]octane). Aromatic linker 2,6-ndc was substituted by longer carboxylic linkers, namely, 4,4'-biphenyldicarboxylate (4,4'-bpdc) and 4,4'-stilbenedicarboxylate (4,4'-sdc), while the dabco pillar was retained. The structural response of the new compounds toward the desolvation and adsorption of various fluids was studied using advanced in situ PXRD techniques, demonstrating distinct differences in the flexible behavior of three compounds and disclosing the impact of linker structure on the framework response. Theoretical calculations provide mechanistic insights and an energetic rationale for the pronounced differences in switchability observed. The energetics of linker bending and linker-linker dispersion interactions govern the phase transitions in investigated MOFs.

16.
Angew Chem Int Ed Engl ; 60(21): 11735-11739, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33651917

RESUMO

Herein we demonstrate mesoporous frameworks interacting with carbon dioxide leading to stimulated structural contractions and massive out-of-equilibrium pressure amplification well beyond ambient pressure. Carbon dioxide, a non-toxic and non-flammable working medium, is promising for the development of pressure-amplifying frameworks for pneumatic technologies and safety systems. The strong interaction of the fluid with the framework even contracts DUT-46, a framework hitherto considered as non-flexible. Synchrotron-based in situ PXRD/adsorption experiments reveal the characteristic contraction pressure for DUT-49 pressure amplification in the range of 350-680 kPa. The stimulated framework contraction expels 1.1 to 2.4 mmol g-1 CO2 leading to autonomous pressure amplification in a pneumatic demonstrator system up to 428 kPa. According to system level estimations even higher theoretical pressure amplification may be achieved between 535 and 1011 kPa.

17.
Inorg Chem ; 59(15): 10717-10726, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32663400

RESUMO

Four new layered flexible metal-organic frameworks (MOFs) containing a diacylhydrazone moiety, namely, guest-filled [Zn2(iso)2(tdih)2]n (1), [Zn2(NH2iso)2(tdih)2]n (2), [Cd2(iso)2(tdih)2]n (3) and [Cd2(NH2iso)2(tdih)2]n (4) were synthesized using terephthalaldehyde di-isonicotinoylhydrazone (tdih) as a linear ditopic linker as well as isophtalate (iso) or 5-aminoisophthalate (NH2iso) as angular colinkers. The MOFs with hexacoordinated cadmium centers feature two-dimensional pore systems as compared to the MOFs with pentacoordinated zinc centers showing either zero-dimensional or mixed zero-/one-dimensional voids, as evidenced by single-crystal X-ray diffraction. In contrast to the frameworks based on isophtalates which do not show any significant gas uptakes, introduction of amino-substituted linker enables CO2 adsorption. Gently activated aminoisophthalate-based frameworks, that is, guest-exchanged in methanol and heated to 100 °C, show reversible gated CO2 adsorptions at 195 K, whereas the increase of activation temperature to 150 °C or more leads to one-step isotherms and lower adsorption capacities. X-ray diffraction and IR spectroscopy reveal significant structural differences in interlayer hydrogen bonding upon activation of materials at higher temperatures. The work emphasizes the role of hydrogen bonds in crystal engineering of layered materials and the importance of activation conditions in such systems.

18.
Inorg Chem ; 59(1): 350-359, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31820946

RESUMO

In situ formation of imine-based organic linkers facilitates the formation of metal-organic frameworks (MOFs), in particular if linker solubility hampers the direct synthesis. The reaction of ZrCl4 with 4-formylbenzoic acid or 4-formyl-3-hydroxybenzoic acid as the aldehyde source and 4-aminobenzoic acid as the amine source is shown to produce zirconium MOFs isoreticular to UiO-66 (PCN-161 and a novel DUT-133, [Zr6O4(OH)4(C15H9NO5)6], respectively). A similar reaction with p-phenylenediamine as the amine-containing building block gave 2-fold interpenetrated framework (PCN-164). Detailed characterization, including single crystal and powder X-ray diffraction, water stability tests, thermal stability, and in situ 1H and 13C NMR were performed to elucidate the formation mechanism of zirconium MOFs containing imine-based linkers. The resulting zirconium MOFs were evaluated as potential materials for CO2 capture and as ethylene oligomerization catalysts with anchored nickel as the active species.

19.
Phys Chem Chem Phys ; 21(2): 674-680, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30542683

RESUMO

Metal-organic frameworks (MOFs) are coordination networks with organic ligands containing potential voids. Some MOFs show pronounced structural flexibility that may result in closing and re-opening these pores. Here, we show that collective flexibility in a MOF-DUT-8(Ni) - is controlled by conformational isomerism. DUT-8(Ni), a pillared-layer MOF with Ni2 paddle-wheels, dabco pillars and naphthalene dicarboxylate (ndc) linkers, can crystallize in many conformational isomers that depend on the orientation of the non-linear ndc linkers with respect to each other. While the open form is compatible with several of these conformations, only one of them, with alternating linker orientations, is stable as the closed form. We show, by means of first principles calculations, that in the stable closed form, the appreciable lattice strain is compensated by London-dispersion forces between the ndc linkers that arrange with maximum overlap in a stacking order similar to the stacking in graphite. We substantiate these results by well-tempered metadynamics calculations on the DFT-based Born-Oppenheimer potential energy surface, by refined X-ray diffraction data and by nitrogen adsorption data obtained by experiment and grand-canonical Monte-Carlo simulations based on the DFT-optimized and PXRD-derived geometries. While the reported origin of flexibility cannot be generalized to all flexible MOFs, it offers a rational design concept of folding mechanisms in switchable MOFs by exploitation of the stabilization effect of linker stacking in the closed form.

20.
Inorg Chem ; 57(19): 11920-11929, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207461

RESUMO

The effect of the synthesis conditions on the structure and guest-responsive properties of a "gate pressure" metal-organic framework (MOF) with composition [Cu(4,4'-bipy)2(BF4)2] n (4,4'-bipy = 4,4'-bipyridine), also known as ELM-11 (ELM = elastic layer material) was investigated. Two different batches of ELM-11, synthesized from water-methanol and water-acetonitrile solutions, have been entirely characterized by PXRD, nitrogen (77 K) and carbon dioxide (195 K) physisorption, elemental analysis, DRIFT, TG, and SEM. Both ELM-11 samples were studied by electron paramagnetic resonance (EPR) spectroscopy in order to follow the change in the local structure of the copper ion during the activation and resolvation. Continuous wave X-band EPR measurements on powder samples provided an elongated octahedral coordination symmetry of the cupric ions and revealed different axial ligands in the as-synthesized and activated forms in both bulk samples of ELM-11. One of the procedures was amended in order to slow down the crystallization that allows isolation of single crystals of two polymorphic modifications of Cu-4,4'-bipyridine coordination polymers, namely [Cu(4,4'-bipy)2(CH3CN)2](BF4)2 and [Cu2O(4,4'-bipy)3(CH3CN)4](BF4)2, one of which shows a crystal structure similar to that of ELM-11. Further single-crystal EPR experiments on the as-synthesized material [Cu(4,4'-bipy)2(CH3CN)2](BF4)2 revealed the orientation of the g tensor of the cupric ions and proved that layers of acetonitrile-synthesized ELM-11 are arranged perpendicularly to the crystallographic c axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA