Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 135(1): 49-60, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18854154

RESUMO

Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely upon host-encoded proteins to facilitate their replication. Here, we combined genome-wide siRNA analyses with interrogation of human interactome databases to assemble a host-pathogen biochemical network containing 213 confirmed host cellular factors and 11 HIV-1-encoded proteins. Protein complexes that regulate ubiquitin conjugation, proteolysis, DNA-damage response, and RNA splicing were identified as important modulators of early-stage HIV-1 infection. Additionally, over 40 new factors were shown to specifically influence the initiation and/or kinetics of HIV-1 DNA synthesis, including cytoskeletal regulatory proteins, modulators of posttranslational modification, and nucleic acid-binding proteins. Finally, 15 proteins with diverse functional roles, including nuclear transport, prostaglandin synthesis, ubiquitination, and transcription, were found to influence nuclear import or viral DNA integration. Taken together, the multiscale approach described here has uncovered multiprotein virus-host interactions that likely act in concert to facilitate the early steps of HIV-1 infection.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas/metabolismo , Replicação Viral , Linhagem Celular , Humanos , Interferência de RNA , Técnicas do Sistema de Duplo-Híbrido
2.
Nature ; 541(7638): 541-545, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28068668

RESUMO

Cell fate perturbations underlie many human diseases, including breast cancer. Unfortunately, the mechanisms by which breast cell fate are regulated are largely unknown. The mammary gland epithelium consists of differentiated luminal epithelial and basal myoepithelial cells, as well as undifferentiated stem cells and more restricted progenitors. Breast cancer originates from this epithelium, but the molecular mechanisms that underlie breast epithelial hierarchy remain ill-defined. Here, we use a high-content confocal image-based short hairpin RNA screen to identify tumour suppressors that regulate breast cell fate in primary human breast epithelial cells. We show that ablation of the large tumour suppressor kinases (LATS) 1 and 2 (refs 5, 6), which are part of the Hippo pathway, promotes the luminal phenotype and increases the number of bipotent and luminal progenitors, the proposed cells-of-origin of most human breast cancers. Mechanistically, we have identified a direct interaction between Hippo and oestrogen receptor-α (ERα) signalling. In the presence of LATS, ERα was targeted for ubiquitination and Ddb1-cullin4-associated-factor 1 (DCAF1)-dependent proteasomal degradation. Absence of LATS stabilized ERα and the Hippo effectors YAP and TAZ (hereafter YAP/TAZ), which together control breast cell fate through intrinsic and paracrine mechanisms. Our findings reveal a non-canonical (that is, YAP/TAZ-independent) effect of LATS in the regulation of human breast cell fate.


Assuntos
Mama/citologia , Mama/enzimologia , Diferenciação Celular , Linhagem da Célula , Receptor alfa de Estrogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/agonistas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mama/patologia , Proteínas de Transporte/metabolismo , Células Cultivadas , Receptor alfa de Estrogênio/agonistas , Feminino , Genes Supressores de Tumor , Humanos , Fosfoproteínas/agonistas , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteólise , Transdução de Sinais , Fatores de Transcrição , Proteínas Supressoras de Tumor/deficiência , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases , Proteínas de Sinalização YAP
3.
Nature ; 546(7658): 376-380, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28562588

RESUMO

Diarrhoeal disease is responsible for 8.6% of global child mortality. Recent epidemiological studies found the protozoan parasite Cryptosporidium to be a leading cause of paediatric diarrhoea, with particularly grave impact on infants and immunocompromised individuals. There is neither a vaccine nor an effective treatment. Here we establish a drug discovery process built on scalable phenotypic assays and mouse models that take advantage of transgenic parasites. Screening a library of compounds with anti-parasitic activity, we identify pyrazolopyridines as inhibitors of Cryptosporidium parvum and Cryptosporidium hominis. Oral treatment with the pyrazolopyridine KDU731 results in a potent reduction in intestinal infection of immunocompromised mice. Treatment also leads to rapid resolution of diarrhoea and dehydration in neonatal calves, a clinical model of cryptosporidiosis that closely resembles human infection. Our results suggest that the Cryptosporidium lipid kinase PI(4)K (phosphatidylinositol-4-OH kinase) is a target for pyrazolopyridines and that KDU731 warrants further preclinical evaluation as a drug candidate for the treatment of cryptosporidiosis.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Criptosporidiose/tratamento farmacológico , Criptosporidiose/parasitologia , Cryptosporidium/efeitos dos fármacos , Cryptosporidium/enzimologia , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Animais Recém-Nascidos , Bovinos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Hospedeiro Imunocomprometido , Interferon gama/deficiência , Interferon gama/genética , Masculino , Camundongos , Camundongos Knockout , Pirazóis/química , Pirazóis/farmacocinética , Piridinas/química , Piridinas/farmacocinética , Ratos , Ratos Wistar
4.
Artigo em Inglês | MEDLINE | ID: mdl-29530849

RESUMO

Artemisinin (ART) resistance has spread through Southeast Asia, posing a serious threat to the control and elimination of malaria. ART resistance has been associated with mutations in the Plasmodium falciparum kelch-13 (Pfk13) propeller domain. Phenotypically, ART resistance is defined as delayed parasite clearance in patients due to the reduced susceptibility of early ring-stage parasites to the active metabolite of ART dihydroartemisinin (DHA). Early rings can enter a state of quiescence upon DHA exposure and resume growth in its absence. These quiescent rings are referred to as dormant rings or DHA-pretreated rings (here called dormant rings). The imidazolopiperazines (IPZ) are a novel class of antimalarial drugs that have demonstrated efficacy in early clinical trials. Here, we characterized the stage of action of the IPZ GNF179 and evaluated its activity against rings and dormant rings in wild-type and ART-resistant parasites. Unlike DHA, GNF179 does not induce dormancy. We show that GNF179 is more rapidly cidal against schizonts than against ring and trophozoite stages. However, with 12 h of exposure, the compound effectively kills rings and dormant rings of both susceptible and ART-resistant parasites within 72 h. We further demonstrate that in combination with ART, GNF179 effectively prevents recrudescence of dormant rings, including those bearing pfk13 propeller mutations.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Imidazóis/farmacologia , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esquizontes/efeitos dos fármacos , Esquizontes/metabolismo , Trofozoítos/efeitos dos fármacos , Trofozoítos/metabolismo
5.
Bioorg Med Chem Lett ; 27(6): 1385-1389, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28216045

RESUMO

A series of 2-oxopiperazine derivatives were designed from the pyrrolopiperazinone cell-based screening hit 4 as a dengue virus inhibitor. Systematic investigation of the structure-activity relationship (SAR) around the piperazinone ring led to the identification of compound (S)-29, which exhibited potent anti-dengue activity in the cell-based assay across all four dengue serotypes with EC50<0.1µM. Cross-resistant analysis confirmed that the virus NS4B protein remained the target of the new oxopiperazine analogs obtained via scaffold morphing from the HTS hit 4.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Piperazinas/farmacologia , Linhagem Celular , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Relação Estrutura-Atividade
6.
Proc Natl Acad Sci U S A ; 107(7): 2944-9, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133616

RESUMO

Many proteins or other biological macromolecules are localized to more than one subcellular structure. The fraction of a protein in different cellular compartments is often measured by colocalization with organelle-specific fluorescent markers, requiring availability of fluorescent probes for each compartment and acquisition of images for each in conjunction with the macromolecule of interest. Alternatively, tailored algorithms allow finding particular regions in images and quantifying the amount of fluorescence they contain. Unfortunately, this approach requires extensive hand-tuning of algorithms and is often cell type-dependent. Here we describe a machine-learning approach for estimating the amount of fluorescent signal in different subcellular compartments without hand tuning, requiring only the acquisition of separate training images of markers for each compartment. In testing on images of cells stained with mixtures of probes for different organelles, we achieved a 93% correlation between estimated and expected amounts of probes in each compartment. We also demonstrated that the method can be used to quantify drug-dependent protein translocations. The method enables automated and unbiased determination of the distributions of protein across cellular compartments, and will significantly improve imaging-based high-throughput assays and facilitate proteome-scale localization efforts.


Assuntos
Algoritmos , Inteligência Artificial , Corantes Fluorescentes/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Espaço Intracelular/metabolismo , Transporte Proteico/fisiologia , Proteômica/métodos
7.
JAMA Oncol ; 8(5): 698-705, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35238873

RESUMO

Importance: The drug HD201 is a biosimilar candidate for breast cancer treatment as the reference trastuzumab. Objective: To compare the efficacy of HD201 with referent trastuzumab. Design, Setting, and Participants: This randomized clinical trial (TROIKA) included 502 women with ERBB2-positive early breast cancer treated with either HD201 or referent trastuzumab. It was conducted across 70 centers in 12 countries, including Western and Eastern Europe and Asian countries. Randomization was stratified by tumor hormone receptor status, clinical stage, and geographic region of recruitment. This analysis was conducted on February 12, 2021, after the completion of the adjuvant phase at a median of 31 months (IQR, 28-33 months) of follow-up. Interventions: Patients with ERBB2-positive early breast cancer were randomly assigned to receive HD201 or referent trastuzumab in the neoadjuvant setting for 8 cycles, concurrently with 4 cycles of docetaxel, which was followed by 4 cycles of epirubicin and cyclophosphamide. Patients then underwent surgery, which was followed by treatment with 10 cycles of adjuvant HD201 or referent trastuzumab. Main Outcome and Measures: The primary end point was the total pathological complete response (tpCR) assessed after neoadjuvant treatment. Equivalence was concluded if the 95% CI of the absolute difference in tpCR between arms in the per-protocol set was within the margin of more or less than 15%. Other objectives included the breast pathological complete response, overall response, event-free and overall survival, safety, pharmacokinetics, and immunogenicity. Results: A total of 502 female patients (mean [range] age, 53 [26-82] years) were randomized to receive either HD201 or referent trastuzumab, and 474 (94.2%) were eligible for inclusion in the per-protocol set. The baseline characteristics were well balanced between the 2 arms; 195 tumors (38.8%) were hormone receptor-negative , and 213 patients (42.4%) had clinical stage III disease. The tpCR rates were 45% and 48.7% for HD201 and referent trastuzumab, respectively. The difference between the 2 groups was not significant at -3.8% (95% CI, -12.8% to 5.4%) and fell within the predefined equivalence margins. The ratio of the tpCR rates between the 2 arms was 0.92 (95% CI, 0.76 to 1.12). A total of 433 patients (86.1%) presented with 2232 treatment-emergent adverse events of special interest for trastuzumab during the entire treatment period, with 220 (88.0%) and 213 (84.5%) patients in the HD201 and referent trastuzumab groups, respectively. Conclusions and Relevance: The results of this randomized clinical trial found that HD201 demonstrated equivalence to referent trastuzumab in terms of efficacy for the end point of tpCR, with a similar safety profile. Trial Registration: ClinicalTrials.gov Identifier: NCT03013504.


Assuntos
Antineoplásicos , Neoplasias da Mama , Terapia Neoadjuvante , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptor ErbB-2 , Trastuzumab/efeitos adversos , Trastuzumab/uso terapêutico
8.
Sci Transl Med ; 13(579)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536278

RESUMO

Dengue virus (DENV) is a mosquito-borne flavivirus that poses a threat to public health, yet no antiviral drug is available. We performed a high-throughput phenotypic screen using the Novartis compound library and identified candidate chemical inhibitors of DENV. This chemical series was optimized to improve properties such as anti-DENV potency and solubility. The lead compound, NITD-688, showed strong potency against all four serotypes of DENV and demonstrated excellent oral efficacy in infected AG129 mice. There was a 1.44-log reduction in viremia when mice were treated orally at 30 milligrams per kilogram twice daily for 3 days starting at the time of infection. NITD-688 treatment also resulted in a 1.16-log reduction in viremia when mice were treated 48 hours after infection. Selection of resistance mutations and binding studies with recombinant proteins indicated that the nonstructural protein 4B is the target of NITD-688. Pharmacokinetic studies in rats and dogs showed a long elimination half-life and good oral bioavailability. Extensive in vitro safety profiling along with exploratory rat and dog toxicology studies showed that NITD-688 was well tolerated after 7-day repeat dosing, demonstrating that NITD-688 may be a promising preclinical candidate for the treatment of dengue.


Assuntos
Vírus da Dengue , Dengue , Animais , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Cães , Camundongos , Modelos Animais , Ratos , Sorogrupo
9.
ACS Infect Dis ; 4(4): 635-645, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29341586

RESUMO

Cryptosporidiosis is a diarrheal disease predominantly caused by Cryptosporidium parvum ( Cp) and Cryptosporidium hominis ( Ch), apicomplexan parasites which infect the intestinal epithelial cells of their human hosts. The only approved drug for cryptosporidiosis is nitazoxanide, which shows limited efficacy in immunocompromised children, the most vulnerable patient population. Thus, new therapeutics and in vitro infection models are urgently needed to address the current unmet medical need. Toward this aim, we have developed novel cytopathic effect (CPE)-based Cp and Ch assays in human colonic tumor (HCT-8) cells and compared them to traditional imaging formats. Further model validation was achieved through screening a collection of FDA-approved drugs and confirming many previously known anti- Cryptosporidium hits as well as identifying a few novel candidates. Collectively, our data reveals this model to be a simple, functional, and homogeneous gain of signal format amenable to high throughput screening, opening new avenues for the discovery of novel anticryptosporidials.


Assuntos
Antiprotozoários/isolamento & purificação , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/crescimento & desenvolvimento , Avaliação Pré-Clínica de Medicamentos/métodos , Células Epiteliais/parasitologia , Antiprotozoários/farmacologia , Linhagem Celular , Humanos
11.
SLAS Discov ; 22(9): 1106-1119, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28731783

RESUMO

The intramembrane protease signal peptide peptidase-like 2a (SPPL2a) is a potential drug target for the treatment of autoimmune diseases due to an essential role in B cells and dendritic cells. To screen a library of 1.4 million compounds for inhibitors of SPPL2a, we developed an imaging assay detecting nuclear translocation of the proteolytically released cytosolic substrate fragment. The state-of-the-art hit calling approach based on nuclear translocation resulted in numerous false-positive hits, mainly interrupting intracellular protein trafficking. To filter the false positives, we extracted 340 image-based readouts and developed a novel multiparametric analysis method that successfully triaged the primary hit list. The identified scaffolds were validated by demonstrating activity on endogenous SPPL2a and substrate CD74/p8 in B cells. The multiparametric analysis discovered diverse cellular phenotypes and provided profiles for the whole library. The principle of the presented imaging assay, the screening strategy, and multiparametric analysis are potentially applicable in future screening campaigns.

12.
Elife ; 62017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215331

RESUMO

Plasmodium liver hypnozoites, which cause disease relapse, are widely considered to be the last barrier towards malaria eradication. The biology of this quiescent form of the parasite is poorly understood which hinders drug discovery. We report a comparative transcriptomic dataset of replicating liver schizonts and dormant hypnozoites of the relapsing parasite Plasmodium cynomolgi. Hypnozoites express only 34% of Plasmodium physiological pathways, while 91% are expressed in replicating schizonts. Few known malaria drug targets are expressed in quiescent parasites, but pathways involved in microbial dormancy, maintenance of genome integrity and ATP homeostasis were robustly expressed. Several transcripts encoding heavy metal transporters were expressed in hypnozoites and the copper chelator neocuproine was cidal to all liver stage parasites. This transcriptomic dataset is a valuable resource for the discovery of vaccines and effective treatments to combat vivax malaria.


Assuntos
Perfilação da Expressão Gênica , Fígado/parasitologia , Macaca mulatta/parasitologia , Plasmodium cynomolgi/crescimento & desenvolvimento , Plasmodium cynomolgi/genética , Esquizontes/crescimento & desenvolvimento , Esquizontes/genética , Animais , Feminino , Masculino
13.
Cell Rep ; 19(3): 451-460, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28423309

RESUMO

Flavivirus infections by Zika and dengue virus impose a significant global healthcare threat with no US Food and Drug Administration (FDA)-approved vaccination or specific antiviral treatment available. Here, we present the discovery of an anti-flaviviral natural product named cavinafungin. Cavinafungin is a potent and selectively active compound against Zika and all four dengue virus serotypes. Unbiased, genome-wide genomic profiling in human cells using a novel CRISPR/Cas9 protocol identified the endoplasmic-reticulum-localized signal peptidase as the efficacy target of cavinafungin. Orthogonal profiling in S. cerevisiae followed by the selection of resistant mutants pinpointed the catalytic subunit of the signal peptidase SEC11 as the evolutionary conserved target. Biochemical analysis confirmed a rapid block of signal sequence cleavage of both host and viral proteins by cavinafungin. This study provides an effective compound against the eukaryotic signal peptidase and independent confirmation of the recently identified critical role of the signal peptidase in the replicative cycle of flaviviruses.


Assuntos
Produtos Biológicos/farmacologia , Vírus da Dengue/fisiologia , Lipopeptídeos/farmacologia , Replicação Viral/efeitos dos fármacos , Zika virus/fisiologia , Produtos Biológicos/química , Sistemas CRISPR-Cas/genética , Vírus da Dengue/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genoma Humano , Genômica , Células HCT116 , Humanos , Lipopeptídeos/química , Proteínas de Membrana , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Serina Endopeptidases , Proteínas Virais/metabolismo , Zika virus/efeitos dos fármacos
14.
Mol Endocrinol ; 19(5): 1213-30, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15650025

RESUMO

The retroviral v-ErbA oncoprotein is a highly mutated variant of the thyroid hormone receptor alpha (TRalpha), which is unable to bind T(3) and interferes with the action of TRalpha in mammalian and avian cancer cells. v-ErbA dominant-negative activity is attributed to competition with TRalpha for T(3)-responsive DNA elements and/or auxiliary factors involved in the transcriptional regulation of T(3)-responsive genes. However, competition models do not address the altered subcellular localization of v-ErbA and its possible implications in oncogenesis. Here, we report that v-ErbA dimerizes with TRalpha and the retinoid X receptor and sequesters a significant fraction of the two nuclear receptors in the cytoplasm. Recruitment of TRalpha to the cytoplasm by v-ErbA can be partially reversed in the presence of ligand and when chromatin is disrupted by the histone deacetylase inhibitor trichostatin A. These results define a new mode of action of v-ErbA and illustrate the importance of cellular compartmentalization in transcriptional regulation and oncogenesis.


Assuntos
Neoplasias/metabolismo , Proteínas Oncogênicas v-erbA/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Citoplasma/metabolismo , Dimerização , Histona Desacetilases/metabolismo , Histonas/metabolismo , Carioferinas/metabolismo , Ligantes , Camundongos , Células NIH 3T3 , Proteínas Oncogênicas v-erbA/genética , Transporte Proteico/fisiologia , Receptor X Retinoide beta/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Proteína Exportina 1
15.
Nat Microbiol ; 1: 16166, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27642791

RESUMO

A molecular understanding of drug resistance mechanisms enables surveillance of the effectiveness of new antimicrobial therapies during development and deployment in the field. We used conventional drug resistance selection as well as a regime of limiting dilution at early stages of drug treatment to probe two antimalarial imidazolopiperazines, KAF156 and GNF179. The latter approach permits the isolation of low-fitness mutants that might otherwise be out-competed during selection. Whole-genome sequencing of 24 independently derived resistant Plasmodium falciparum clones revealed four parasites with mutations in the known cyclic amine resistance locus (pfcarl) and a further 20 with mutations in two previously unreported P. falciparum drug resistance genes, an acetyl-CoA transporter (pfact) and a UDP-galactose transporter (pfugt). Mutations were validated both in vitro by CRISPR editing in P. falciparum and in vivo by evolution of resistant Plasmodium berghei mutants. Both PfACT and PfUGT were localized to the endoplasmic reticulum by fluorescence microscopy. As mutations in pfact and pfugt conveyed resistance against additional unrelated chemical scaffolds, these genes are probably involved in broad mechanisms of antimalarial drug resistance.

16.
PLoS One ; 8(1): e51671, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23300950

RESUMO

Emerging evidence suggests that some cancers contain a population of stem-like TICs (tumor-initiating cells) and eliminating TICs may offer a new strategy to develop successful anti-cancer therapies. As molecular mechanisms underlying the maintenance of the TIC pool are poorly understood, the development of TIC-specific therapeutics remains a major challenge. We first identified and characterized TICs and non-TICs isolated from a mouse breast cancer model. TICs displayed increased tumorigenic potential, self-renewal, heterogeneous differentiation, and bipotency. Gene expression analysis and immunostaining of TICs and non-TICs revealed that FGFR2 was preferentially expressed in TICs. Loss of FGFR2 impaired self-renewal of TICs, thus resulting in marked decreases in the TIC population and tumorigenic potential. Restoration of FGFR2 rescued the defects in TIC pool maintenance, bipotency, and breast tumor growth driven by FGFR2 knockdown. In addition, pharmacological inhibition of FGFR2 kinase activity led to a decrease in the TIC population which resulted in suppression of breast tumor growth. Moreover, human breast TICs isolated from patient tumor samples were found enriched in a FGFR2+ population that was sufficient to initiate tumor growth. Our data suggest that FGFR2 is essential in sustaining the breast TIC pool through promotion of self-renewal and maintenance of bipotent TICs, and raise the possibility of FGFR2 inhibition as a strategy for anti-cancer therapy by eradicating breast TICs.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Animais/metabolismo , Células-Tronco Neoplásicas/imunologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Antígeno CD24/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Integrina beta1/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Microscopia de Fluorescência , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais
17.
Chem Biol ; 19(8): 955-62, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22884261

RESUMO

Hippo signaling represents a tumor suppressor pathway that regulates organ size and tumorigenesis through phosphorylation and inhibition of the transcription coactivator YAP. Here, we show that serum deprivation dramatically induces YAP Ser127 phosphorylation and cytoplasmic retention, independent of cell-cell contact. Through chemical isolation and activity profiling, we identified serum-derived sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) as small molecule activators of YAP. S1P induces YAP nuclear localization through S1P(2) receptor, Rho GTPase activation, and F-actin polymerization, independent of the core Hippo pathway kinases. Bioinformatics studies also showed that S1P stimulation induces YAP target gene expression in mouse liver and human embryonic stem cells. These results revealed potent small molecule regulators of YAP and suggest that S1P and LPA might modulate cell proliferation and tumorigenesis through YAP activation.


Assuntos
Lisofosfolipídeos/farmacologia , Proteínas Nucleares/metabolismo , Esfingosina/análogos & derivados , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Animais , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Lisofosfolipídeos/sangue , Lisofosfolipídeos/química , Lisofosfolipídeos/isolamento & purificação , Camundongos , Proteínas Nucleares/química , Fosforilação/efeitos dos fármacos , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/sangue , Esfingosina/isolamento & purificação , Esfingosina/farmacologia , Fatores de Transcrição/química , Proteínas rho de Ligação ao GTP/metabolismo
18.
Cell Host Microbe ; 11(3): 306-18, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22423970

RESUMO

Pathogens commonly utilize endocytic pathways to gain cellular access. The endosomal pattern recognition receptors TLR7 and TLR9 detect pathogen-encoded nucleic acids to initiate MyD88-dependent proinflammatory responses to microbial infection. Using genome-wide RNAi screening and integrative systems-based analysis, we identify 190 cofactors required for TLR7- and TLR9-directed signaling responses. A set of cofactors were crossprofiled for their activities downstream of several immunoreceptors and then functionally mapped based on the known architecture of NF-κB signaling pathways. Protein complexes and pathways involved in ubiquitin-protein ligase activities, sphingolipid metabolism, chromatin modifications, and ancient stress responses were found to modulate innate recognition of endosomal nucleic acids. Additionally, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was characterized as necessary for ubiquitin-dependent TLR9 targeting to the endolysosome. Proteins and pathways identified here should prove useful in delineating strategies to manipulate innate responses for treatment of autoimmune disorders and microbial infection.


Assuntos
Imunidade Inata/genética , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Embrião de Galinha , Simulação por Computador , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Endossomos/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Transporte Proteico , Interferência de RNA , Transdução de Sinais , Máquina de Vetores de Suporte
19.
ACS Chem Biol ; 6(11): 1214-22, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21866942

RESUMO

Decoquinate has single-digit nanomolar activity against in vitro blood stage Plasmodium falciparum parasites, the causative agent of human malaria. In vitro evolution of decoquinate-resistant parasites and subsequent comparative genomic analysis to the drug-sensitive parental strain revealed resistance was conferred by two nonsynonymous single nucleotide polymorphisms in the gene encoding cytochrome b. The resultant amino acid mutations, A122T and Y126C, reside within helix C in the ubiquinol-binding pocket of cytochrome b, an essential subunit of the cytochrome bc(1) complex. As with other cytochrome bc(1) inhibitors, such as atovaquone, decoquinate has low nanomolar activity against in vitro liver stage P. yoelii and provides partial prophylaxis protection when administered to infected mice at 50 mg kg(-1). In addition, transgenic parasites expressing yeast dihydroorotate dehydrogenase are >200-fold less sensitive to decoquinate, which provides additional evidence that this drug inhibits the parasite's mitochondrial electron transport chain. Importantly, decoquinate exhibits limited cross-resistance to a panel of atovaquone-resistant parasites evolved to harbor various mutations in cytochrome b. The basis for this difference was revealed by molecular docking studies, in which both of these inhibitors were shown to have distinctly different modes of binding within the ubiquinol-binding site of cytochrome b.


Assuntos
Antimaláricos/farmacologia , Citocromos b/antagonistas & inibidores , Decoquinato/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/administração & dosagem , Antimaláricos/química , Cristalografia por Raios X , Citocromos b/genética , Citocromos b/metabolismo , Decoquinato/administração & dosagem , Decoquinato/química , Descoberta de Drogas , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos ICR , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/genética , Relação Estrutura-Atividade
20.
Science ; 334(6061): 1372-7, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22096101

RESUMO

Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration < 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Imidazóis/farmacologia , Fígado/parasitologia , Malária/tratamento farmacológico , Piperazinas/farmacologia , Plasmodium/efeitos dos fármacos , Animais , Antimaláricos/química , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos , Eritrócitos/parasitologia , Humanos , Imidazóis/química , Imidazóis/farmacocinética , Imidazóis/uso terapêutico , Malária/parasitologia , Malária/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Piperazinas/química , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Plasmodium/citologia , Plasmodium/crescimento & desenvolvimento , Plasmodium/fisiologia , Plasmodium berghei/citologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/fisiologia , Plasmodium falciparum/citologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/fisiologia , Plasmodium yoelii/citologia , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/fisiologia , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Distribuição Aleatória , Bibliotecas de Moléculas Pequenas , Esporozoítos/efeitos dos fármacos , Esporozoítos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA