Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Antimicrob Agents Chemother ; 68(5): e0018024, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526049

RESUMO

OXA-48 has rapidly disseminated worldwide and become one of the most common carbapenemases in many countries with more than 45 variants reported with, in some cases, significant differences in their hydrolysis profiles. The R214 residue, located in the ß5-ß6 loop, is crucial for the carbapenemase activity, as it stabilizes carbapenems in the active site and maintains the shape of the active site through interactions with D159. In this study, we have characterized a novel variant of OXA-48, OXA-933 with a single D159N change. To evaluate the importance of this residue, point mutations were generated (D159A, D159G, D159K, and D159W), kinetic parameters of OXA-933, OXA-48 D159G, and OXA-48 D159K were determined and compared to those of OXA-48 and OXA-244. The blaOXA-933 gene was borne on Tn2208, a 2,696-bp composite transposon made of two IS1 elements surrounded by 9 bp target site duplications and inserted into a non-self-transmissible plasmid pOXA-933 of 7,872 bp in size. Minimal inhibitory concentration values of E. coli expressing the blaOXA-933 gene or of its point mutant derivatives were lower for carbapenems (except for D159G) as compared to those expressing the blaOXA-48 gene. Steady-state kinetic parameters revealed lower catalytic efficiencies for expanded spectrum cephalosporins and carbapenems. A detailed structural analysis confirmed the crucial role of D159 in shaping the active site of OXA-48 enzymes by interacting with R214. Our work further illustrates the remarkable propensity of OXA-48-like carbapenemases to evolve through mutations at positions outside the ß5-ß6 loop, but interacting with key residues of it.


Assuntos
Antibacterianos , Carbapenêmicos , Escherichia coli , Testes de Sensibilidade Microbiana , Penicilinas , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Carbapenêmicos/metabolismo , Hidrólise , Antibacterianos/farmacologia , Penicilinas/metabolismo , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Cinética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Elementos de DNA Transponíveis/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação Puntual
3.
Euro Surveill ; 29(11)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487887

RESUMO

BackgroundFrom 2019 to 2022, the French National Reference Centre for Antibiotic Resistance (NRC) received a total of 25 isolates of Enterobacter hormaechei subsp. hoffmannii sequence type (ST)1740. All produced metallo-ß-lactamase(s) and were from the Lyon area.AimTo understand these strains' spread and evolution, more extended microbiological and molecular analyses were conducted.MethodsPatients' demographics and specimen type related to isolates were retrieved. All strains underwent short-read whole genome sequencing, and for 15, long-read sequencing to understand carbapenemase-gene acquisition. Clonal relationships were inferred from core-genome single nt polymorphisms (SNPs). Plasmids and the close genetic environment of each carbapenemase-encoding gene were analysed.ResultsPatients (10 female/15 male) were on average 56.6 years old. Seven isolates were recovered from infections and 18 through screening. With ≤ 27 SNPs difference between each other's genome sequences, the 25 strains represented a clone dissemination. All possessed a chromosome-encoded bla NDM-1 gene inside a composite transposon flanked by two IS3000. While spreading, the clone independently acquired a bla VIM-4-carrying plasmid of IncHI2 type (n = 12 isolates), or a bla IMP-13-carrying plasmid of IncP-1 type (n = 1 isolate). Of the 12 isolates co-producing NDM-1 and VIM-4, seven harboured the colistin resistance gene mcr9.2; the remaining five likely lost this gene through excision.ConclusionThis long-term outbreak was caused by a chromosome-encoded NDM-1-producing ST1740 E. hormaechei subsp. hoffmannii clone, which, during its dissemination, acquired plasmids encoding VIM-4 or IMP-13 metallo-ß-lactamases. To our knowledge, IMP-13 has not prior been reported in Enterobacterales in France. Epidemiological and environmental investigations should be considered alongside microbiological and molecular ones.


Assuntos
Enterobacter , beta-Lactamases , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Enterobacter/genética , beta-Lactamases/genética , Plasmídeos/genética , Colistina , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
4.
N Engl J Med ; 390(14): 1339-1341, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38598804
8.
Nat Commun ; 15(1): 2032, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448399

RESUMO

Bacterial evolution is affected by mobile genetic elements like phages and conjugative plasmids, offering new adaptive traits while incurring fitness costs. Their infection is affected by the bacterial capsule. Yet, its importance has been difficult to quantify because of the high diversity of confounding mechanisms in bacterial genomes such as anti-viral systems and surface receptor modifications. Swapping capsule loci between Klebsiella pneumoniae strains allowed us to quantify their impact on plasmid and phage infection independently of genetic background. Capsule swaps systematically invert phage susceptibility, revealing serotypes as key determinants of phage infection. Capsule types also influence conjugation efficiency in both donor and recipient cells, a mechanism shaped by capsule volume and conjugative pilus structure. Comparative genomics confirmed that more permissive serotypes in the lab correspond to the strains acquiring more conjugative plasmids in nature. The least capsule-sensitive pili (F-like) are the most frequent in the species' plasmids, and are the only ones associated with both antibiotic resistance and virulence factors, driving the convergence between virulence and antibiotics resistance in the population. These results show how traits of cellular envelopes define slow and fast lanes of infection by mobile genetic elements, with implications for population dynamics and horizontal gene transfer.


Assuntos
Bacteriófagos , Genoma Bacteriano , Fenótipo , Plasmídeos/genética , Sorogrupo , Bacteriófagos/genética
9.
Microorganisms ; 12(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065158

RESUMO

OXA-244, an R214G variant of OXA-48, is silently spreading worldwide likely because of difficulties in detection using classical screening media. Here, we characterized two clinical isolates of Escherichia coli and Citrobacter youngae that displayed reduced susceptibility to carbapenems but were lacking significant carbapenemase activity as revealed by negative Carba NP test results. However, positive test results were seen for OXA-48-like enzymes by lateral flow immunoassays. WGS revealed the presence of a blaOXA-181-like gene that codes for OXA-484, an R214G variant of OXA-181. BlaOXA-484 gene was located on a 58.4-kb IncP1-like plasmid (pN-OXA-484), that upon transfer into E. coli HB4 with impaired permeability, conferred carbapenem and temocillin resistance (MICs > 32 mg/L). E. coli TOP10 (pTOPO-OXA-484) revealed reduced MICs in most substrates as compared to E. coli TOP10 (pTOPO-OXA-181), especially for imipenem (0.25 mg/L versus 0.75 mg/L) and temocillin (16 mg/L versus 1028 mg/L). Catalytic efficiencies of OXA-484 were reduced as compared to OXA-181 for most ß-lactams including imipenem and temocillin with 27.5- and 21.7-fold reduction, respectively. Molecular modeling confirmed that the salt bridges between R214, D159, and the R1 substituent's carboxylate group of temocillin were not possible with G214 in OXA-484, explaining the reduced affinity for temocillin. In addition, changes in active site's water network may explain the decrease in hydrolysis rate of carbapenems. OXA-484 has weak imipenem and temocillin hydrolytic activities, which may lead to silent spread due to underdetection using selective screening media or biochemical imipenem hydrolysis confirmatory tests.

10.
Lancet Microbe ; 5(6): e547-e558, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677305

RESUMO

BACKGROUND: Morganella spp are opportunistic pathogens involved in various infections. Intrinsic resistance to multiple antibiotics (including colistin) combined with the emergence of carbapenemase producers reduces the number of active antimicrobials. The aim of this study was to characterise genetic features related to the spread of carbapenem-resistant Morganella spp. METHODS: This comparative genomic study included extensively drug-resistant Morganella spp isolates collected between Jan 1, 2013, and March 1, 2021, by the French National Reference Center (NRC; n=68) and European antimicrobial resistance reference centres in seven European countries (n=104), as well as one isolate from Canada, two reference strains from the Pasteur Institute collection (Paris, France), and two colistin-susceptible isolates from Bicêtre Hospital (Kremlin-Bicêtre, France). The isolates were characterised by whole-genome sequencing, antimicrobial susceptibility testing, and biochemical tests. Complete genomes from GenBank (n=103) were also included for genomic analysis, including phylogeny and determination of core genomes and resistomes. Genetic distance between different species or subspecies was performed using average nucleotide identity (ANI). Intrinsic resistance mechanisms to polymyxins were investigated by combining genetic analysis with mass spectrometry on lipid A. FINDINGS: Distance analysis by ANI of 275 isolates identified three groups: Morganella psychrotolerans, Morganella morganii subspecies sibonii, and M morganii subspecies morganii, and a core genome maximum likelihood phylogenetic tree showed that the M morganii isolates can be separated into four subpopulations. On the basis of these findings and of phenotypic divergences between isolates, we propose a modified taxonomy for the Morganella genus including four species, Morganella psychrotolerans, Morganella sibonii, Morganella morganii, and a new species represented by a unique environmental isolate. We propose that M morganii include two subspecies: M morganii subspecies morganii (the most prevalent) and M morganii subspecies intermedius. This modified taxonomy was supported by a difference in intrinsic resistance to tetracycline and conservation of metabolic pathways such as trehalose assimilation, both only present in M sibonii. Carbapenemase producers were mostly identified among five high-risk clones of M morganii subspecies morganii. The most prevalent carbapenemase corresponded to NDM-1, followed by KPC-2, and OXA-48. A cefepime-zidebactam combination was the most potent antimicrobial against the 172 extensively drug-resistant Morganella spp isolates in our collection from different European countries, which includes metallo-ß-lactamase producers. Lipid A analysis showed that the intrinsic resistance to colistin was associated with the presence of L-ARA4N on lipid A. INTERPRETATION: This global characterisation of, to our knowledge, the widest collection of extensively drug-resistant Morganella spp highlights the need to clarify the taxonomy and decipher intrinsic resistance mechanisms, and paves the way for further genomic comparisons. FUNDING: None.


Assuntos
Antibacterianos , Proteínas de Bactérias , Infecções por Enterobacteriaceae , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Morganella , Filogenia , beta-Lactamases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Genoma Bacteriano/genética , Humanos , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Morganella/genética , Genômica , Sequenciamento Completo do Genoma , Europa (Continente)/epidemiologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Colistina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA