Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(4)2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29621172

RESUMO

Self-controlled active oscillating microcantilevers with a piezoresistive readout are very promising sensitive sensors, despite their small surface. In order to increase this surface and consequently their sensitivity, we nanostructured them with copper hydroxide (Cu(OH)2) or with copper oxide (CuO) nanorods. The Cu(OH)2 rods were grown, on a homogeneous copper layer previously evaporated on the top of the cantilever. The CuO nanorods were further obtained by the annealing of the copper hydroxide nanostructures. Then, these copper based nanorods were used to detect several molecules vapors. The results showed no chemical affinity (no formation of a chemical bond) between the CuO cantilevers and the tested molecules. The cantilever with Cu(OH)2 nanorods is selective to nitrogen dioxide (NO2) in presence of humidity. Indeed, among all the tested analytes, copper hydroxide has only an affinity with NO2. Despite the absence of affinity, the cantilevers could even so condensate explosives (1,3,5-trinitro-1,3,5-triazinane (RDX) and pentaerythritol tetranitrate (PETN) on their surface when the cantilever temperature was lower than the explosives source, allowing their detection. We proved that in condensation conditions, the cantilever surface material has no importance and that the nanostructuration is useless because a raw silicon cantilever detects as well as the nanostructured ones.

2.
Anal Chem ; 87(18): 9494-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26272107

RESUMO

Smart detection systems for explosive sensors are designed both to detect explosives in the air at trace level and identify the threat for a specific response. Following this need we have succeeded in using microthermal analysis to sensitively identify and discriminate between RDX and PETN explosive vapors at trace level. Once the explosive vapor is trapped in a porous material, heating the material at a fast rate of 3000 K/s up to 350 °C will result in a thermal pattern specifically corresponding to the explosive and its interaction with the porous material. The explosive signatures obtained make it possible to simultaneously identify the presence and the nature of the explosive vapor in just a few milliseconds. Therefore, this also allows the development of multitarget devices using porous material for capturing the vapor combined with microthermal analysis for fast detection and identification. So far it is the first time that chip calorimetry has been used to characterize and identify explosives in vapor state.

3.
Anal Chem ; 86(10): 5125-30, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24766275

RESUMO

Combining photonic integrated circuits with a biologically based sensing approach has the ability to provide a new generation of portable and low-cost sensor devices with a high specificity and sensitivity for a number of applications in environmental monitoring, defense, and homeland security. We report herein on the specific biosensing under continuous air flow of DMMP, which is commonly used as a simulant and a precursor for the synthesis of Sarin. The proposed technology is based on the selective recognition of the targeted DMMP molecule by specifically modified proteins immobilized on photonic structures. The response of the biophotonic structures shows a high stability and accuracy over 3 months, allowing for the detection in diluted air of DMMP at concentration as low as 35 µg/m(3) (6.8 ppb) in less than 15 min. The performance of the developed technology satisfies most current homeland and military security requirements.


Assuntos
Substâncias para a Guerra Química/química , Compostos Organofosforados/química , Sarina/síntese química , Terrorismo Químico , Monitoramento Ambiental , Microcomputadores
4.
Anal Chem ; 82(8): 3389-93, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20345122

RESUMO

Among various methods for landmine detection, as well as soil and water pollution monitoring, the detection of explosive compounds in air is becoming an important and inevitable challenge for homeland security applications, due to the threatening increase in terrorist explosive bombs used against civil populations. However, in the last case, there is a crucial need for the detection of vapor phase traces or subtraces (in the ppt range or even lower). A novel and innovative generator for explosive trace vapors was designed and developed. It allowed the generation of theoretical concentrations as low as 0.24 ppq for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in air according to Clapeyron equations. The accurate generation of explosive concentrations at subppt levels was verified for RDX and 2,4,6-trinitrotoluene (TNT) using a gas chromatograph coupled to an electron capture detector (GC-ECD). First, sensing material experiments were conducted on a nanostructured tungsten oxide. The sensing efficiency of this material determined as its adsorption capacity toward 54 ppb RDX was calculated to be five times higher than the sensing efficiency of a 54 ppb TNT vapor. The material sensing efficiency showed no dependence on the mass of material used. The results showed that the device allowed the calibration and discrimination between materials for highly sensitive and accurate sensing detection in air of low vapor pressure explosives such as TNT or RDX at subppb levels. The designed device and method showed promising features for nanosensing applications in the field of ultratrace explosive detection. The current perspectives are to decrease the testing scale and the detection levels to ppt or subppt concentration of explosives in air.

5.
Colloids Surf B Biointerfaces ; 148: 585-591, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693720

RESUMO

A fast and reliable detection of biological agents in air is of a crucial importance to respond to terrorist attacks. With the aim to efficiently react to such hazards there is the need to develop highly sensitive and specific detection analytical devices for selective and quantitative detection of biological threats such as the presence of Bacillus anthracis spores and/or the presence of Ricin A toxins. In this study we explored how to achieve an oriented immobilization of antibody molecules on silicon nitride surfaces to improve their efficiency to bind to specific target molecules. In particular, we used two different methods to covalently immobilize antibody molecules on silicon nitride surfaces, and here we report the obtained results.


Assuntos
Anticorpos Imobilizados/química , Anticorpos/química , Bacillus cereus/imunologia , Ovalbumina/imunologia , Compostos de Silício/química , Animais , Anticorpos/imunologia , Anticorpos Imobilizados/imunologia , Reações Antígeno-Anticorpo , Antígenos/química , Antígenos/imunologia , Técnicas Biossensoriais/métodos , Ensaio de Imunoadsorção Enzimática , Microscopia de Força Atômica , Microscopia de Fluorescência , Coelhos , Esporos Bacterianos/imunologia , Propriedades de Superfície
6.
J Environ Manage ; 86(1): 282-90, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17275982

RESUMO

An Electrical Low Pressure Impactor (ELPI) was used during spring and autumn 2003 in the centre of Strasbourg for the measurement of atmospheric aerosols size distribution. The concentration of NO(x) and SO(2) in air was simultaneously measured with specific analysers. Samples were collected in the range 0.007-10 microm in equivalent aerodynamic diameter size. Number distributions are representative of a pollution originating from urban traffic with a particle size distribution exhibiting a nucleation mode below 29 nm and an accumulation mode around 80 nm in size. A mean particle density equal to 39000+/-35000 total particles per cm(3) with a size ranging from 7 to 10 microm was obtained after a sampling period of 2 weeks in spring. About 86.9% of the number of particles have an aerodynamic diameter below 0.1 microm and 13.1% between 0.1 and 1 microm. Correlation coefficients between the number of particles impacted on each ELPI plate and gas concentrations (SO(2) and NO(x)) showed that the numbers of particles with diameter between 0.10 and 0.62 microm are highly related to the NO(x) concentration. This result indicates that particles are traffic induced since NO(x) is mainly emitted by cars as shown by measurements on various sites. Particles are less clearly correlated to the SO(2) concentration. Particle analysis on different ELPI plates for a sampling period of 2 weeks in autumn showed high level of soluble NO(3)(-), SO(4)(2-) and NH(4)(+) ions. Indeed, up to 90% b.w. of these three species were found in the particle range 0.1-1 microm. The formation of particulate NH(4)NO(3) is favoured by high NO(x) concentration, which induces the formation of gaseous HNO(3).


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Ânions/análise , Cidades , Monitoramento Ambiental , França , Óxidos de Nitrogênio/análise , Tamanho da Partícula , Potássio/análise , Compostos de Amônio Quaternário/análise , Estações do Ano , Sódio/análise , Dióxido de Enxofre/análise , Emissões de Veículos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA