Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 290(47): 28388-28401, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26416886

RESUMO

Prior studies in both budding yeast (Saccharomyces cerevisiae) and in human cells have established that septin protomers assemble into linear hetero-octameric rods with 2-fold rotational symmetry. In mitotically growing yeast cells, five septin subunits are expressed (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) and assemble into two types of rods that differ only in their terminal subunit: Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 and Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Shs1. EM analysis has shown that, under low salt conditions, the Cdc11-capped rods polymerize end to end to form long paired filaments, whereas Shs1-capped rods form arcs, spirals, and rings. To develop a facile method to study septin polymerization in vitro, we exploited our previous work in which we generated septin complexes in which all endogenous cysteine (Cys) residues were eliminated by site-directed mutagenesis, except an introduced E294C mutation in Cdc11 in these experiments. Mixing samples of a preparation of such single-Cys containing Cdc11-capped rods that have been separately derivatized with organic dyes that serve as donor and acceptor, respectively, for FRET provided a spectroscopic method to monitor filament assembly mediated by Cdc11-Cdc11 interaction and to measure its affinity under specified conditions. Modifications of this same FRET scheme also allow us to assess whether Shs1-capped rods are capable of end to end association either with themselves or with Cdc11-capped rods. This FRET approach also was used to follow the binding to septin filaments of a septin-interacting protein, the type II myosin-binding protein Bni5.


Assuntos
Biopolímeros/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Biopolímeros/química , Septinas/química
2.
Soft Matter ; 11(32): 6412-8, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26171741

RESUMO

Progerin is a mutant form of the nucleoskeletal protein lamin A, and its expression results in the rare premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS). Patients with HGPS demonstrate several characteristic signs of aging including cardiovascular and skeletal dysfunction. Cells from HGPS patients show several nuclear abnormalities including aberrant morphology, nuclear stiffening and loss of epigenetic modifications including heterochromatin territories. However, it is unclear why these changes disproportionately impact mechanically-responsive tissues. Using micropipette aspiration, we show that nuclei in progerin-expressing cells are stiffer than control cells. Conversely, our particle tracking reveals the nuclear interior becomes more compliant in cells from HGPS patients or with progerin expression, as consistent with decreased chromatin condensation as shown previously. Additionally, we find the nuclear interior is less responsive to external mechanical force from shear or compression likely resulting from damped force propagation due to nucleoskeletal stiffening. Collectively our findings suggest that force is similarly transduced into the nuclear interior in normal cells. In HGPS cells a combination of a stiffened nucleoskeleton and softened nuclear interior leads to mechanical irregularities and dysfunction of mechanoresponsive tissues in HGPS patients.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Lamina Tipo A/metabolismo , Estresse Mecânico , Núcleo Celular/química , Cromatina/química , Citoesqueleto/química , Citoesqueleto/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Lamina Tipo A/genética , Mutação , Progéria/genética
3.
eNeuro ; 10(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37321845

RESUMO

Peripheral administration of tissue inhibitor of metalloproteinases 2 (TIMP2), a protein inhibitor of matrix metalloproteinases (MMPs), has previously been shown to have beneficial effects on cognition and neurons in aged mice. Here, to better understand the potential of recombinant TIMP2 proteins, an IgG4Fc fusion protein (TIMP2-hIgG4) was developed to extend the plasma half-life of TIMP2. Following one month of administration of TIMP2 or TIMP2-hIgG4 via intraperitoneal injections, 23-month-old male C57BL/6J mice showed improved hippocampal-dependent memory in a Y-maze, increased hippocampal cfos gene expression, and increased excitatory synapse density in the CA1 and dentate gyrus (DG) of the hippocampus. Thus, fusion to hIgG4 extended the half-life of TIMP2 while retaining the beneficial cognitive and neuronal effects. Moreover, it retained its ability to cross the blood-brain barrier. To deepen the mechanistic understanding of the beneficial function of TIMP2 on neuronal activity and cognition, a TIMP2 construct lacking MMP inhibitory activity, Ala-TIMP2, was generated, which provides steric hindrance that prevents inhibition of MMPs by the TIMP2 protein while still allowing MMP binding. A comprehensive assessment of the MMP inhibitory and binding capacity of these engineered proteins is outlined. Surprisingly, MMP inhibition by TIMP2 was not essential for its beneficial effects on cognition and neuronal function. These findings both confirm previously published research, expand on the potential mechanism for the beneficial effects of TIMP2, and provide important details for a therapeutic path forward for TIMP2 recombinant proteins in aging-related cognitive decline.


Assuntos
Cognição , Metaloproteinases da Matriz , Animais , Masculino , Camundongos , Envelhecimento , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL
4.
J Mol Biol ; 428(24 Pt B): 4962-4980, 2016 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-27806918

RESUMO

Septins are a protein family found in all eukaryotes (except higher plants) that have roles in membrane remodeling and formation of diffusion barriers and as a scaffold to recruit other proteins. In budding yeast, proper execution of cytokinesis and cell division requires the formation of a collar of circumferential filaments at the bud neck. These filaments are assembled from apolar septin hetero-octamers. Currently, little is known about the mechanisms that control the arrangement and dynamics of septin structures. In this study, we utilized both Förster resonance energy transfer and electron microscopy to analyze the biophysical properties of the septin-binding protein Bni5 and how its association with septin filaments affects their organization. We found that the interaction of Bni5 with the terminal subunit (Cdc11) at the junctions between adjacent hetero-octamers in paired filaments is highly cooperative. Both the C-terminal end of Bni5 and the C-terminal extension of Cdc11 make important contributions to their interaction. Moreover, this binding may stabilize the dimerization of Bni5, which, in turn, forms cross-filament braces that significantly narrow, and impose much more uniform spacing on, the gap between paired filaments.


Assuntos
Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Transferência Ressonante de Energia de Fluorescência , Microscopia Eletrônica , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Ligação Proteica , Mapeamento de Interação de Proteínas
5.
Ann Biomed Eng ; 44(7): 2123-31, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26581348

RESUMO

The cellular structures and mechanical properties of human mesenchymal stem cells (hMSCs) vary significantly during culture and with differentiation. Previously, studies to measure mechanics have provided divergent results using different quantitative parameters and mechanical models of deformation. Here, we examine hMSCs prepared for clinical use and subject them to mechanical testing conducive to the relevant deformability associated with clinical injection procedures. Micropipette aspiration of hMSCs shows deformation as a viscoelastic fluid, with little variation from cell to cell within a population. After two passages, hMSCs deform as viscoelastic solids. Further, for clinical applicability during stem cell migration in vivo, we investigated the ability of hMSCs to invade into micropillar arrays of increasing confinement from 12 to 8 µm spacing between adjacent micropillars. We find that hMSC samples with reduced deformability and cells that are more solid-like with passage are more easily able to enter the micropillar arrays. Increased cell fluidity is an advantage for injection procedures and optimization of cell selection based on mechanical properties may enhance efficacy of injected hMSC populations. However, the ability to invade and migrate within tight interstitial spaces appears to be increased with a more solidified cytoskeleton, likely from increased force generation and contractility. Thus, there may be a balance between optimal injection survival and in situ tissue invasion.


Assuntos
Técnicas de Cultura de Células/métodos , Movimento Celular , Células-Tronco Mesenquimais/metabolismo , Sobrevivência Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia
6.
Genetics ; 200(3): 843-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25971666

RESUMO

UNLABELLED: Septins are a conserved family of GTP-binding proteins that form heterooctameric complexes that assemble into higher-order structures. In yeast, septin superstructure at the bud neck serves as a barrier to separate a daughter cell from its mother and as a scaffold to recruit the proteins that execute cytokinesis. However, how septins recruit specific factors has not been well characterized. In the accompanying article in this issue, (Finnigan et al. 2015), we demonstrated that the C-terminal extensions (CTEs) of the alternative terminal subunits of septin heterooctamers, Cdc11 and Shs1, share a role required for optimal septin function in vivo. Here we describe our use of unbiased genetic approaches (both selection of dosage suppressors and analysis of synthetic interactions) that pinpointed Bni5 as a protein that interacts with the CTEs of Cdc11 and Shs1. Furthermore, we used three independent methods-construction of chimeric proteins, noncovalent tethering mediated by a GFP-targeted nanobody, and imaging by fluorescence microscopy-to confirm that a physiologically important function of the CTEs of Cdc11 and Shs1 is optimizing recruitment of Bni5 and thereby ensuring efficient localization at the bud neck of Myo1, the type II myosin of the actomyosin contractile ring.Related article in GENETICS: Finnigan, G. C. et al., 2015 Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 200: 841-861.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citocinese/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Citoesqueleto/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/fisiologia
7.
Appl Biochem Biotechnol ; 137-140(1-12): 777-91, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18478434

RESUMO

Foam fractionation by itself cannot effectively concentrate hydrophilic proteins such as lysozyme and cellulase. However, the addition of a detergent to a protein solution can increase the foam volume, and thus, the performance of the foam fractionation process. In this article, we propose a possible protein concentration mechanism of this detergent-assisted foam fractionation: A detergent binds to an oppositely charged protein, followed by the detergent-protein complex being adsorbed onto a bubble during aeration. The formation of this complex is inferred by a decrease in surface tension of the detergent-protein solution. The surface tension of a solution with the complex is lower than the surface tension of a protein or a detergent solution alone. The detergent can then be stripped from the adsorbed protein, such as cellulase, by an artificial chaperone such as beta-cyclodextrin. Stripping the detergent from the protein allows the protein to return to its original conformation and to potentially retain all of its original activity following the foam fractionation process. Low-cost alternatives to beta-cyclodextrin such as corn dextrin were tested experimentally to restore the protein activity through detergent stripping, but without success.


Assuntos
Celulase/química , Celulase/isolamento & purificação , Fracionamento Químico/métodos , Detergentes/química , Muramidase/isolamento & purificação , beta-Ciclodextrinas/química , Estudos de Viabilidade , Gases/química , Tensão Superficial , beta-Ciclodextrinas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA