Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cell ; 184(13): 3467-3473.e11, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34133941

RESUMO

We previously reported that a single immunization with an adenovirus serotype 26 (Ad26)-vector-based vaccine expressing an optimized SARS-CoV-2 spike (Ad26.COV2.S) protected rhesus macaques against SARS-CoV-2 challenge. To evaluate reduced doses of Ad26.COV2.S, 30 rhesus macaques were immunized once with 1 × 1011, 5 × 1010, 1.125 × 1010, or 2 × 109 viral particles (vp) Ad26.COV2.S or sham and were challenged with SARS-CoV-2. Vaccine doses as low as 2 × 109 vp provided robust protection in bronchoalveolar lavage, whereas doses of 1.125 × 1010 vp were required for protection in nasal swabs. Activated memory B cells and binding or neutralizing antibody titers following vaccination correlated with protective efficacy. At suboptimal vaccine doses, viral breakthrough was observed but did not show enhancement of disease. These data demonstrate that a single immunization with relatively low dose of Ad26.COV2.S effectively protected against SARS-CoV-2 challenge in rhesus macaques, although a higher vaccine dose may be required for protection in the upper respiratory tract.


Assuntos
Adenoviridae/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Feminino , Imunogenicidade da Vacina/imunologia , Memória Imunológica/imunologia , Macaca mulatta , Masculino , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos
2.
Cell ; 183(1): 185-196.e14, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007262

RESUMO

Several HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges. We vaccinated 30 rhesus macaques with Ad26-SIV Env/Gag/Pol and SIV Env gp140 protein vaccines and assessed the induction of antibody responses and a putative protective signature. This signature included multiple antibody functions and correlated with upregulation of interferon pathways in vaccinated animals. Adoptive transfer of purified immunoglobulin G (IgG) from the vaccinated animals with the most robust protective signatures provided partial protection against SIVmac251 challenges in naive recipient rhesus macaques. These data demonstrate the protective efficacy of purified vaccine-elicited antiviral antibodies in this model, even in the absence of virus neutralization.


Assuntos
Imunização Passiva/métodos , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Produtos do Gene env/imunologia , Produtos do Gene gag/imunologia , Produtos do Gene pol/imunologia , HIV-1/imunologia , Imunoglobulina G/imunologia , Macaca mulatta/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia
3.
Cell ; 173(5): 1111-1122.e10, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29606355

RESUMO

The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings with uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis of neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, and neuromuscular pathology. Our data show that vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease.


Assuntos
Feto/virologia , Neurônios/patologia , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Animais Recém-Nascidos , Apoptose , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Calcinose/patologia , Calcinose/veterinária , Feminino , Idade Gestacional , Macaca mulatta , Imageamento por Ressonância Magnética , Necrose , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Neurônios/virologia , Gravidez , Índice de Gravidade de Doença , Vasculite/patologia , Vasculite/veterinária , Infecção por Zika virus/veterinária , Infecção por Zika virus/virologia
4.
Cell ; 169(4): 610-620.e14, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28457610

RESUMO

Zika virus (ZIKV) is associated with severe neuropathology in neonates as well as Guillain-Barré syndrome and other neurologic disorders in adults. Prolonged viral shedding has been reported in semen, suggesting the presence of anatomic viral reservoirs. Here we show that ZIKV can persist in cerebrospinal fluid (CSF) and lymph nodes (LN) of infected rhesus monkeys for weeks after virus has been cleared from peripheral blood, urine, and mucosal secretions. ZIKV-specific neutralizing antibodies correlated with rapid clearance of virus in peripheral blood but remained undetectable in CSF for the duration of the study. Viral persistence in both CSF and LN correlated with upregulation of mechanistic target of rapamycin (mTOR), proinflammatory, and anti-apoptotic signaling pathways, as well as downregulation of extracellular matrix signaling pathways. These data raise the possibility that persistent or occult neurologic and lymphoid disease may occur following clearance of peripheral virus in ZIKV-infected individuals.


Assuntos
Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Animais , Líquido Cefalorraquidiano/virologia , Inflamação/imunologia , Trato Gastrointestinal Inferior/virologia , Linfonodos/virologia , Macaca mulatta , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
5.
Cell ; 155(3): 531-9, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24243013

RESUMO

The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP:


Assuntos
Vacinas contra a AIDS/imunologia , HIV-1 , Animais , Formação de Anticorpos , Feminino , Antígenos HIV/imunologia , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Imunidade Celular , Macaca mulatta , Masculino , Dados de Sequência Molecular , Organismos Livres de Patógenos Específicos
6.
Nature ; 596(7871): 268-272, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107529

RESUMO

The Ad26.COV2.S vaccine1-3 has demonstrated clinical efficacy against symptomatic COVID-19, including against the B.1.351 variant that is partially resistant to neutralizing antibodies1. However, the immunogenicity of this vaccine in humans against SARS-CoV-2 variants of concern remains unclear. Here we report humoral and cellular immune responses from 20 Ad26.COV2.S vaccinated individuals from the COV1001 phase I-IIa clinical trial2 against the original SARS-CoV-2 strain WA1/2020 as well as against the B.1.1.7, CAL.20C, P.1 and B.1.351 variants of concern. Ad26.COV2.S induced median pseudovirus neutralizing antibody titres that were 5.0-fold and 3.3-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020 on day 71 after vaccination. Median binding antibody titres were 2.9-fold and 2.7-fold lower against the B.1.351 and P.1 variants, respectively, as compared with WA1/2020. Antibody-dependent cellular phagocytosis, complement deposition and natural killer cell activation responses were largely preserved against the B.1.351 variant. CD8 and CD4 T cell responses, including central and effector memory responses, were comparable among the WA1/2020, B.1.1.7, B.1.351, P.1 and CAL.20C variants. These data show that neutralizing antibody responses induced by Ad26.COV2.S were reduced against the B.1.351 and P.1 variants, but functional non-neutralizing antibody responses and T cell responses were largely preserved against SARS-CoV-2 variants. These findings have implications for vaccine protection against SARS-CoV-2 variants of concern.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Ad26COVS1 , Adolescente , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Humanos , Imunidade Celular , Imunidade Humoral , Pessoa de Meia-Idade , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
7.
PLoS Biol ; 20(5): e3001609, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35512013

RESUMO

Despite the rapid creation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) vaccines, the precise correlates of immunity against severe Coronavirus Disease 2019 (COVID-19) are still unknown. Neutralizing antibodies represent a robust surrogate of protection in early Phase III studies, but vaccines provide protection prior to the evolution of neutralization, vaccines provide protection against variants that evade neutralization, and vaccines continue to provide protection against disease severity in the setting of waning neutralizing titers. Thus, in this study, using an Ad26.CoV2.S dose-down approach in nonhuman primates (NHPs), the role of neutralization, Fc effector function, and T-cell immunity were collectively probed against infection as well as against viral control. While dosing-down minimally impacted neutralizing and binding antibody titers, Fc receptor binding and functional antibody levels were induced in a highly dose-dependent manner. Neutralizing antibody and Fc receptor binding titers, but minimally T cells, were linked to the prevention of transmission. Conversely, Fc receptor binding/function and T cells were linked to antiviral control, with a minimal role for neutralization. These data point to dichotomous roles of neutralization and T-cell function in protection against transmission and disease severity and a continuous role for Fc effector function as a correlate of immunity key to halting and controlling SARS-CoV-2 and emerging variants.


Assuntos
COVID-19 , Ad26COVS1 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Primatas , Receptores Fc , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
8.
PLoS Pathog ; 18(4): e1010467, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35452496

RESUMO

A key challenge for the development of a cure to HIV-1 infection is the persistent viral reservoir established during early infection. Previous studies using Toll-like receptor 7 (TLR7) agonists and broadly neutralizing antibodies (bNAbs) have shown delay or prevention of viral rebound following antiretroviral therapy (ART) discontinuation in simian-human immunodeficiency virus (SHIV)-infected rhesus macaques. In these prior studies, ART was initiated early during acute infection, which limited the size and diversity of the viral reservoir. Here we evaluated in SHIV-infected rhesus macaques that did not initiate ART until 1 year into chronic infection whether the TLR7 agonist vesatolimod in combination with the bNAb PGT121, formatted either as a human IgG1, an effector enhanced IgG1, or an anti-CD3 bispecific antibody, would delay or prevent viral rebound following ART discontinuation. We found that all 3 antibody formats in combination with vesatolimod were able to prevent viral rebound following ART discontinuation in a subset of animals. These data indicate that a TLR7 agonist combined with antibodies may be a promising strategy to achieve long-term ART-free HIV remission in humans.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV/uso terapêutico , Imunoglobulina G , Macaca mulatta , Receptor 7 Toll-Like/agonistas , Carga Viral
9.
Nature ; 564(7734): E8, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397346

RESUMO

In Fig. 4b of this Article, the x-axis labels 'PGT121' and 'GS-9620' were inadvertently swapped in both graphs. In Fig. 5a, b, 'TLR7' should have been 'GS-9620'. These figures have been corrected online.

10.
Nature ; 563(7731): 360-364, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30283138

RESUMO

The latent viral reservoir is the critical barrier for the development of a cure for HIV-1 infection. Previous studies have shown direct antiviral activity of potent HIV-1 Env-specific broadly neutralizing antibodies (bNAbs) administered when antiretroviral therapy (ART) was discontinued, but it remains unclear whether bNAbs can target the viral reservoir during ART. Here we show that administration of the V3 glycan-dependent bNAb PGT121 together with the Toll-like receptor 7 (TLR7) agonist vesatolimod (GS-9620) during ART delayed viral rebound following discontinuation of ART in simian-human immunodeficiency virus (SHIV)-SF162P3-infected rhesus monkeys in which ART was initiated during early acute infection. Moreover, in the subset of monkeys that were treated with both PGT121 and GS-9620 and that did not show viral rebound after discontinuation of ART, adoptive transfer studies and CD8-depletion studies also did not reveal virus. These data demonstrate the potential of bNAb administration together with innate immune stimulation as a possible strategy for targeting the viral reservoir.


Assuntos
Anticorpos Antivirais/imunologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , Receptor 7 Toll-Like/agonistas , Transferência Adotiva , Animais , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/uso terapêutico , Anticorpos Neutralizantes/imunologia , Antígenos CD8/deficiência , Antígenos CD8/imunologia , DNA Viral/análise , Feminino , Anticorpos Anti-HIV/imunologia , HIV-1/genética , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Pteridinas/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/genética , Receptor 7 Toll-Like/imunologia , Carga Viral
11.
Nature ; 540(7632): 284-287, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27841870

RESUMO

The development of immunologic interventions that can target the viral reservoir in HIV-1-infected individuals is a major goal of HIV-1 research. However, little evidence exists that the viral reservoir can be sufficiently targeted to improve virologic control following discontinuation of antiretroviral therapy. Here we show that therapeutic vaccination with Ad26/MVA (recombinant adenovirus serotype 26 (Ad26) prime, modified vaccinia Ankara (MVA) boost) and stimulation of TLR7 (Toll-like receptor 7) improves virologic control and delays viral rebound following discontinuation of antiretroviral therapy in SIV-infected rhesus monkeys that began antiretroviral therapy during acute infection. Therapeutic vaccination with Ad26/MVA resulted in a marked increase in the magnitude and breadth of SIV-specific cellular immune responses in virologically suppressed, SIV-infected monkeys. TLR7 agonist administration led to innate immune stimulation and cellular immune activation. The combination of Ad26/MVA vaccination and TLR7 stimulation resulted in decreased levels of viral DNA in lymph nodes and peripheral blood, and improved virologic control and delayed viral rebound following discontinuation of antiretroviral therapy. The breadth of cellular immune responses correlated inversely with set point viral loads and correlated directly with time to viral rebound. These data demonstrate the potential of therapeutic vaccination combined with innate immune stimulation as a strategy aimed at a functional cure for HIV-1 infection.


Assuntos
Adenoviridae/genética , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/imunologia , Receptor 7 Toll-Like/imunologia , Vaccinia virus/genética , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Antirretrovirais/administração & dosagem , DNA Viral/análise , DNA Viral/sangue , Feminino , Vetores Genéticos/genética , Infecções por HIV/imunologia , Infecções por HIV/terapia , Imunidade Celular , Imunidade Inata , Macaca mulatta , Masculino , RNA Viral/análise , RNA Viral/sangue , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/isolamento & purificação , Fatores de Tempo , Receptor 7 Toll-Like/genética , Carga Viral/imunologia
12.
Nature ; 536(7617): 474-8, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27355570

RESUMO

Zika virus (ZIKV) is a flavivirus that is responsible for the current epidemic in Brazil and the Americas. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans and mice. The rapid development of a safe and effective ZIKV vaccine is a global health priority, but very little is currently known about ZIKV immunology and mechanisms of immune protection. Here we show that a single immunization with a plasmid DNA vaccine or a purified inactivated virus vaccine provides complete protection in susceptible mice against challenge with a strain of ZIKV involved in the outbreak in northeast Brazil. This ZIKV strain has recently been shown to cross the placenta and to induce fetal microcephaly and other congenital malformations in mice. We produced DNA vaccines expressing ZIKV pre-membrane and envelope (prM-Env), as well as a series of deletion mutants. The prM-Env DNA vaccine, but not the deletion mutants, afforded complete protection against ZIKV, as measured by absence of detectable viraemia following challenge, and protective efficacy correlated with Env-specific antibody titers. Adoptive transfer of purified IgG from vaccinated mice conferred passive protection, and depletion of CD4 and CD8 T lymphocytes in vaccinated mice did not abrogate this protection. These data demonstrate that protection against ZIKV challenge can be achieved by single-shot subunit and inactivated virus vaccines in mice and that Env-specific antibody titers represent key immunologic correlates of protection. Our findings suggest that the development of a ZIKV vaccine for humans is likely to be achievable.


Assuntos
Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia , Zika virus/imunologia , Transferência Adotiva , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Brasil , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Deleção de Genes , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Camundongos , Microcefalia/complicações , Microcefalia/virologia , Vacinas de DNA/química , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de Produtos Inativados/química , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Zika virus/química , Zika virus/genética , Infecção por Zika virus/complicações , Infecção por Zika virus/imunologia
14.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132241

RESUMO

Simian-human immunodeficiency virus (SHIV) infection of rhesus monkeys is an important preclinical model for human immunodeficiency virus type 1 (HIV-1) vaccines, therapeutics, and cure strategies. SHIVs have been optimized by incorporating HIV-1 Env residue 375 mutations that mimic the bulky or hydrophobic residues typically found in simian immunodeficiency virus (SIV) Env to improve rhesus CD4 binding. We applied this strategy to three SHIV challenge stocks (SHIV-SF162p3, SHIV-AE16, and SHIV-325c) and observed three distinct outcomes. We constructed six Env375 variants (M, H, W, Y, F, and S) for each SHIV, and we performed a pool competition study in rhesus monkeys to define the optimal variant for each SHIV prior to generating large-scale challenge stocks. We identified SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH as the optimal variants. SHIV-SF162p3S could not be improved, as it already contained the optimal Env375 residue. SHIV-AE16W exhibited a similar replicative capacity to the parental SHIV-AE16 stock. In contrast, SHIV-325cH demonstrated a 2.6-log higher peak and 1.6-log higher setpoint viral loads than the parental SHIV-325c stock. These data demonstrate the diversity of potential outcomes following Env375 modification in SHIVs. Moreover, the clade C SHIV-325cH challenge stock may prove useful for evaluating prophylactic or therapeutic interventions against clade C HIV-1.IMPORTANCE We sought to enhance the infectivity of three SHIV stocks by optimization of a key residue in human immunodeficiency virus type 1 (HIV-1) Env (Env375). We developed the following three new simian-human immunodeficiency virus (SHIV) stocks: SHIV-SF162p3S/wild type, SHIV-AE16W, and SHIV-325cH. SHIV-SF162p3S could not be optimized, SHIV-AE16W proved comparable to the parental virus, and SHIV-325cH demonstrated markedly enhanced replicative capacity compared with the parental virus.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Neutralizantes , Linfócitos T CD4-Positivos , Feminino , Produtos do Gene env/genética , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Humanos , Macaca mulatta , Masculino , Mutação , Análise de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral , Replicação Viral
15.
JAMA ; 325(23): 2370-2380, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33983379

RESUMO

Importance: Pregnant women are at increased risk of morbidity and mortality from COVID-19 but have been excluded from the phase 3 COVID-19 vaccine trials. Data on vaccine safety and immunogenicity in these populations are therefore limited. Objective: To evaluate the immunogenicity of COVID-19 messenger RNA (mRNA) vaccines in pregnant and lactating women, including against emerging SARS-CoV-2 variants of concern. Design, Setting, and Participants: An exploratory, descriptive, prospective cohort study enrolled 103 women who received a COVID-19 vaccine from December 2020 through March 2021 and 28 women who had confirmed SARS-CoV-2 infection from April 2020 through March 2021 (the last follow-up date was March 26, 2021). This study enrolled 30 pregnant, 16 lactating, and 57 neither pregnant nor lactating women who received either the mRNA-1273 (Moderna) or BNT162b2 (Pfizer-BioNTech) COVID-19 vaccines and 22 pregnant and 6 nonpregnant unvaccinated women with SARS-CoV-2 infection. Main Outcomes and Measures: SARS-CoV-2 receptor binding domain binding, neutralizing, and functional nonneutralizing antibody responses from pregnant, lactating, and nonpregnant women were assessed following vaccination. Spike-specific T-cell responses were evaluated using IFN-γ enzyme-linked immunospot and multiparameter intracellular cytokine-staining assays. Humoral and cellular immune responses were determined against the original SARS-CoV-2 USA-WA1/2020 strain as well as against the B.1.1.7 and B.1.351 variants. Results: This study enrolled 103 women aged 18 to 45 years (66% non-Hispanic White) who received a COVID-19 mRNA vaccine. After the second vaccine dose, fever was reported in 4 pregnant women (14%; SD, 6%), 7 lactating women (44%; SD, 12%), and 27 nonpregnant women (52%; SD, 7%). Binding, neutralizing, and functional nonneutralizing antibody responses as well as CD4 and CD8 T-cell responses were present in pregnant, lactating, and nonpregnant women following vaccination. Binding and neutralizing antibodies were also observed in infant cord blood and breast milk. Binding and neutralizing antibody titers against the SARS-CoV-2 B.1.1.7 and B.1.351 variants of concern were reduced, but T-cell responses were preserved against viral variants. Conclusion and Relevance: In this exploratory analysis of a convenience sample, receipt of a COVID-19 mRNA vaccine was immunogenic in pregnant women, and vaccine-elicited antibodies were transported to infant cord blood and breast milk. Pregnant and nonpregnant women who were vaccinated developed cross-reactive antibody responses and T-cell responses against SARS-CoV-2 variants of concern.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Sangue Fetal/imunologia , Imunogenicidade da Vacina , Leite Humano/imunologia , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , Anticorpos Neutralizantes/sangue , Vacina BNT162 , Reações Cruzadas/imunologia , Feminino , Humanos , Imunoensaio , Lactação , Leucócitos Mononucleares/fisiologia , Pessoa de Meia-Idade , Gravidez/imunologia , Estudos Prospectivos , Linfócitos T/imunologia , Vacinas Sintéticas/imunologia , Adulto Jovem , Vacinas de mRNA
16.
JAMA ; 325(15): 1535-1544, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33704352

RESUMO

Importance: Control of the global COVID-19 pandemic will require the development and deployment of safe and effective vaccines. Objective: To evaluate the immunogenicity of the Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) in humans, including the kinetics, magnitude, and phenotype of SARS-CoV-2 spike-specific humoral and cellular immune responses. Design, Setting, and Participants: Twenty-five participants were enrolled from July 29, 2020, to August 7, 2020, and the follow-up for this day 71 interim analysis was completed on October 3, 2020; follow-up to assess durability will continue for 2 years. This study was conducted at a single clinical site in Boston, Massachusetts, as part of a randomized, double-blind, placebo-controlled phase 1 clinical trial of Ad26.COV2.S. Interventions: Participants were randomized to receive 1 or 2 intramuscular injections with 5 × 1010 viral particles or 1 × 1011 viral particles of Ad26.COV2.S vaccine or placebo administered on day 1 and day 57 (5 participants in each group). Main Outcomes and Measures: Humoral immune responses included binding and neutralizing antibody responses at multiple time points following immunization. Cellular immune responses included immunospot-based and intracellular cytokine staining assays to measure T-cell responses. Results: Twenty-five participants were randomized (median age, 42; age range, 22-52; 52% women, 44% male, 4% undifferentiated), and all completed the trial through the day 71 interim end point. Binding and neutralizing antibodies emerged rapidly by day 8 after initial immunization in 90% and 25% of vaccine recipients, respectively. By day 57, binding and neutralizing antibodies were detected in 100% of vaccine recipients after a single immunization. On day 71, the geometric mean titers of spike-specific binding antibodies were 2432 to 5729 and the geometric mean titers of neutralizing antibodies were 242 to 449 in the vaccinated groups. A variety of antibody subclasses, Fc receptor binding properties, and antiviral functions were induced. CD4+ and CD8+ T-cell responses were induced. Conclusion and Relevance: In this phase 1 study, a single immunization with Ad26.COV2.S induced rapid binding and neutralization antibody responses as well as cellular immune responses. Two phase 3 clinical trials are currently underway to determine the efficacy of the Ad26.COV2.S vaccine. Trial Registration: ClinicalTrials.gov Identifier: NCT04436276.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunidade Celular , Imunogenicidade da Vacina , Adulto , COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Método Duplo-Cego , Feminino , Humanos , Imunidade Humoral , Masculino , Pessoa de Meia-Idade , Potência de Vacina , Adulto Jovem
17.
Nature ; 512(7512): 74-7, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25042999

RESUMO

The viral reservoir represents a critical challenge for human immunodeficiency virus type 1 (HIV-1) eradication strategies. However, it remains unclear when and where the viral reservoir is seeded during acute infection and the extent to which it is susceptible to early antiretroviral therapy (ART). Here we show that the viral reservoir is seeded rapidly after mucosal simian immunodeficiency virus (SIV) infection of rhesus monkeys and before systemic viraemia. We initiated suppressive ART in groups of monkeys on days 3, 7, 10 and 14 after intrarectal SIVMAC251 infection. Treatment with ART on day 3 blocked the emergence of viral RNA and proviral DNA in peripheral blood and also substantially reduced levels of proviral DNA in lymph nodes and gastrointestinal mucosa as compared with treatment at later time points. In addition, treatment on day 3 abrogated the induction of SIV-specific humoral and cellular immune responses. Nevertheless, after discontinuation of ART following 24 weeks of fully suppressive therapy, virus rebounded in all animals, although the monkeys that were treated on day 3 exhibited a delayed viral rebound as compared with those treated on days 7, 10 and 14. The time to viral rebound correlated with total viraemia during acute infection and with proviral DNA at the time of ART discontinuation. These data demonstrate that the viral reservoir is seeded rapidly after intrarectal SIV infection of rhesus monkeys, during the 'eclipse' phase, and before detectable viraemia. This strikingly early seeding of the refractory viral reservoir raises important new challenges for HIV-1 eradication strategies.


Assuntos
Macaca mulatta/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Carga Viral , Viremia/virologia , Animais , Antirretrovirais/administração & dosagem , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Portador Sadio/tratamento farmacológico , Portador Sadio/virologia , DNA Viral/análise , DNA Viral/biossíntese , DNA Viral/sangue , Modelos Animais de Doenças , Feminino , Cinética , Macaca mulatta/imunologia , Masculino , Provírus/genética , RNA Viral/sangue , Reto/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Fatores de Tempo , Falha de Tratamento , Carga Viral/efeitos dos fármacos , Viremia/tratamento farmacológico , Replicação Viral/efeitos dos fármacos
18.
Lancet ; 392(10143): 232-243, 2018 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-30047376

RESUMO

BACKGROUND: More than 1·8 million new cases of HIV-1 infection were diagnosed worldwide in 2016. No licensed prophylactic HIV-1 vaccine exists. A major limitation to date has been the lack of direct comparability between clinical trials and preclinical studies. We aimed to evaluate mosaic adenovirus serotype 26 (Ad26)-based HIV-1 vaccine candidates in parallel studies in humans and rhesus monkeys to define the optimal vaccine regimen to advance into clinical efficacy trials. METHODS: We conducted a multicentre, randomised, double-blind, placebo-controlled phase 1/2a trial (APPROACH). Participants were recruited from 12 clinics in east Africa, South Africa, Thailand, and the USA. We included healthy, HIV-1-uninfected participants (aged 18-50 years) who were considered at low risk for HIV-1 infection. We randomly assigned participants to one of eight study groups, stratified by region. Participants and investigators were blinded to the treatment allocation throughout the study. We primed participants at weeks 0 and 12 with Ad26.Mos.HIV (5 × 1010 viral particles per 0·5 mL) expressing mosaic HIV-1 envelope (Env)/Gag/Pol antigens and gave boosters at weeks 24 and 48 with Ad26.Mos.HIV or modified vaccinia Ankara (MVA; 108 plaque-forming units per 0·5 mL) vectors with or without high-dose (250 µg) or low-dose (50 µg) aluminium adjuvanted clade C Env gp140 protein. Those in the control group received 0·9% saline. All study interventions were administered intramuscularly. Primary endpoints were safety and tolerability of the vaccine regimens and Env-specific binding antibody responses at week 28. Safety and immunogenicity were also assessed at week 52. All participants who received at least one vaccine dose or placebo were included in the safety analysis; immunogenicity was analysed using the per-protocol population. We also did a parallel study in rhesus monkeys (NHP 13-19) to assess the immunogenicity and protective efficacy of these vaccine regimens against a series of six repetitive, heterologous, intrarectal challenges with a rhesus peripheral blood mononuclear cell-derived challenge stock of simian-human immunodeficiency virus (SHIV-SF162P3). The APPROACH trial is registered with ClinicalTrials.gov, number NCT02315703. FINDINGS: Between Feb 24, 2015, and Oct 16, 2015, we randomly assigned 393 participants to receive at least one dose of study vaccine or placebo in the APPROACH trial. All vaccine regimens demonstrated favourable safety and tolerability. The most commonly reported solicited local adverse event was mild-to-moderate pain at the injection site (varying from 69% to 88% between the different active groups vs 49% in the placebo group). Five (1%) of 393 participants reported at least one grade 3 adverse event considered related to the vaccines: abdominal pain and diarrhoea (in the same participant), increased aspartate aminotransferase, postural dizziness, back pain, and malaise. The mosaic Ad26/Ad26 plus high-dose gp140 boost vaccine was the most immunogenic in humans; it elicited Env-specific binding antibody responses (100%) and antibody-dependent cellular phagocytosis responses (80%) at week 52, and T-cell responses at week 50 (83%). We also randomly assigned 72 rhesus monkeys to receive one of five different vaccine regimens or placebo in the NHP 13-19 study. Ad26/Ad26 plus gp140 boost induced similar magnitude, durability, and phenotype of immune responses in rhesus monkeys as compared with humans and afforded 67% protection against acquisition of SHIV-SF162P3 infection (two-sided Fisher's exact test p=0·007). Env-specific ELISA and enzyme-linked immunospot assay responses were the principal immune correlates of protection against SHIV challenge in monkeys. INTERPRETATION: The mosaic Ad26/Ad26 plus gp140 HIV-1 vaccine induced comparable and robust immune responses in humans and rhesus monkeys, and it provided significant protection against repetitive heterologous SHIV challenges in rhesus monkeys. This vaccine concept is currently being evaluated in a phase 2b clinical efficacy study in sub-Saharan Africa (NCT03060629). FUNDING: Janssen Vaccines & Prevention BV, National Institutes of Health, Ragon Institute of MGH, MIT and Harvard, Henry M Jackson Foundation for the Advancement of Military Medicine, US Department of Defense, and International AIDS Vaccine Initiative.


Assuntos
Vacinas contra a AIDS/administração & dosagem , HIV-1/imunologia , Vacinas contra a AIDS/efeitos adversos , Dor Abdominal/etiologia , Adenoviridae , Adolescente , Adulto , Animais , Aspartato Aminotransferases/análise , Dor nas Costas/etiologia , Diarreia/etiologia , Tontura/etiologia , Relação Dose-Resposta a Droga , Método Duplo-Cego , Fadiga/etiologia , Vetores Genéticos , Voluntários Saudáveis , Humanos , Imunidade Celular , Imunidade Humoral , Macaca mulatta , Pessoa de Meia-Idade , Adulto Jovem
19.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793950

RESUMO

Vaccine-elicited immunoglobulin G (IgG) has been shown to be important for protection against simian-human immunodeficiency virus (SHIV) infection in rhesus monkeys. However, it remains unclear whether vaccine-elicited IgA responses are beneficial or detrimental for protection. In this study, we evaluated the kinetics, magnitude, breadth, and linear epitope specificities of vaccine-elicited IgG and IgA responses in serum and mucosal secretions following intramuscular immunization with adenovirus 26 (Ad26) prime, Env protein boost vaccination regimens. The systemic and mucosal antibody responses exhibited kinetics similar to those of the serum antibody responses but lower titers than the serum antibody responses. Moreover, the IgG and IgA responses were correlated, both in terms of the magnitude of the responses and in terms of the antibody specificities against linear human immunodeficiency virus type 1 (HIV-1) Env, Gag, and Pol epitopes. These data suggest that IgG and IgA responses are highly coordinated in both peripheral blood and mucosal compartments following Ad26/Env vaccination in rhesus monkeys.IMPORTANCE Vaccine-elicited IgG responses are important for protection against simian-human immunodeficiency virus (SHIV) infection in nonhuman primates. However, much less is known about the role and function of IgA, despite it being the predominant antibody in mucosal sites. There is debate as to whether HIV-1-specific IgA responses are beneficial or detrimental, since serum anti-Env IgA titers were shown to be inversely correlated with protection in the RV144 clinical trial. We thus assessed vaccine-elicited IgG and IgA antibody responses in peripheral blood and mucosal secretions following vaccination with the Ad26/Env vaccine.


Assuntos
Adenoviridae , Epitopos/imunologia , Vetores Genéticos , Anticorpos Anti-HIV/imunologia , Proteína gp160 do Envelope de HIV/imunologia , HIV-1/imunologia , Imunização Secundária , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Animais , Epitopos/genética , Proteína gp160 do Envelope de HIV/genética , HIV-1/genética , Macaca mulatta
20.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29298888

RESUMO

Human and chimpanzee adenovirus vectors are being developed to circumvent preexisting antibodies against common adenovirus vectors such as Ad5. However, baseline immunity to these vectors still exists in human populations. Traditional cloning of new adenovirus vaccine vectors is a long and cumbersome process that takes 2 months or more and that requires rare unique restriction enzyme sites. Here we describe a novel, restriction enzyme-independent method for rapid cloning of new adenovirus vaccine vectors that reduces the total cloning procedure to 1 week. We developed 14 novel adenovirus vectors from rhesus monkeys that can be grown to high titers and that are immunogenic in mice. All vectors grouped with the unusual adenovirus species G and show extremely low seroprevalence in humans. Rapid cloning of novel adenovirus vectors is a promising approach for the development of new vector platforms. Rhesus adenovirus vectors may prove useful for clinical development.IMPORTANCE To overcome baseline immunity to human and chimpanzee adenovirus vectors, we developed 14 novel adenovirus vectors from rhesus monkeys. These vectors are immunogenic in mice and show extremely low seroprevalence in humans. Rhesus adenovirus vectors may prove useful for clinical development.


Assuntos
Adenoviridae , Vacinas contra Adenovirus , Clonagem Molecular , Vetores Genéticos , Imunogenicidade da Vacina/genética , Células A549 , Adenoviridae/genética , Adenoviridae/imunologia , Vacinas contra Adenovirus/genética , Vacinas contra Adenovirus/imunologia , Animais , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Macaca mulatta , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA