Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Glycobiology ; 28(8): 624-636, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29873711

RESUMO

Homologous glycosyltransferases GTA and GTB perform the final step in human ABO(H) blood group A and B antigen synthesis by transferring the sugar moiety from donor UDP-GalNAc/UDP-Gal to the terminal H antigen disaccharide acceptor. Like other GT-A fold family 6 glycosyltransferases, GTA and GTB undergo major conformational changes in two mobile regions, the C-terminal tail and internal loop, to achieve the closed, catalytic state. These changes are known to establish a salt bridge network among conserved active site residues Arg188, Asp211 and Asp302, which move to accommodate a series of discrete donor conformations while promoting loop ordering and formation of the closed enzyme state. However, the individual significance of these residues in linking these processes remains unclear. Here, we report the kinetics and high-resolution structures of GTA/GTB mutants of residues 188 and 302. The structural data support a conserved salt bridge network critical to mobile polypeptide loop organization and stabilization of the catalytically competent donor conformation. Consistent with the X-ray crystal structures, the kinetic data suggest that disruption of this salt bridge network has a destabilizing effect on the transition state, emphasizing the importance of Arg188 and Asp302 in the glycosyltransfer reaction mechanism. The salt bridge network observed in GTA/GTB structures during substrate binding appears to be conserved not only among other Carbohydrate Active EnZyme family 6 glycosyltransferases but also within both retaining and inverting GT-A fold glycosyltransferases. Our findings augment recently published crystal structures, which have identified a correlation between donor substrate conformational changes and mobile loop ordering.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Glicosiltransferases/química , Sistema ABO de Grupos Sanguíneos/genética , Sistema ABO de Grupos Sanguíneos/metabolismo , Arginina/química , Arginina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Domínios Proteicos
2.
Glycobiology ; 27(10): 966-977, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575295

RESUMO

The human ABO(H) blood group A- and B-synthesizing glycosyltransferases GTA and GTB have been structurally characterized to high resolution in complex with their respective trisaccharide antigen products. These findings are particularly timely and relevant given the dearth of glycosyltransferase structures collected in complex with their saccharide reaction products. GTA and GTB utilize the same acceptor substrates, oligosaccharides terminating with α-l-Fucp-(1→2)-ß-d-Galp-OR (where R is a glycolipid or glycoprotein), but use distinct UDP donor sugars, UDP-N-acetylgalactosamine and UDP-galactose, to generate the blood group A (α-l-Fucp-(1→2)[α-d-GalNAcp-(1→3)]-ß-d-Galp-OR) and blood group B (α-l-Fucp-(1→2)[α-d-Galp-(1→3)]-ß-d-Galp-OR) determinant structures, respectively. Structures of GTA and GTB in complex with their respective trisaccharide products reveal a conflict between the transferred sugar monosaccharide and the ß-phosphate of the UDP donor. Mapping of the binding epitopes by saturation transfer difference NMR measurements yielded data consistent with the X-ray structural results. Taken together these data suggest a mechanism of product release where monosaccharide transfer to the H-antigen acceptor induces active site disorder and ejection of the UDP leaving group prior to trisaccharide egress.


Assuntos
Sistema ABO de Grupos Sanguíneos/metabolismo , Glicosiltransferases/química , Simulação de Acoplamento Molecular , Trissacarídeos/metabolismo , Sistema ABO de Grupos Sanguíneos/química , Sítios de Ligação , Cristalografia por Raios X , Glicosiltransferases/metabolismo , Humanos , Ligação Proteica , Trissacarídeos/química
3.
Glycobiology ; 27(4): 370-380, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979997

RESUMO

The homologous glycosyltransferases α-1,3-N-acetylgalactosaminyltransferase (GTA) and α-1,3-galactosyltransferase (GTB) carry out the final synthetic step of the closely related human ABO(H) blood group A and B antigens. The catalytic mechanism of these model retaining enzymes remains under debate, where Glu303 has been suggested to act as a putative nucleophile in a double displacement mechanism, a local dipole stabilizing the intermediate in an orthogonal associative mechanism or a general base to stabilize the reactive oxocarbenium ion-like intermediate in an SNi-like mechanism. Kinetic analysis of GTA and GTB point mutants E303C, E303D, E303Q and E303A shows that despite the enzymes having nearly identical sequences, the corresponding mutants of GTA/GTB have up to a 13-fold difference in their residual activities relative to wild type. High-resolution single crystal X-ray diffraction studies reveal, surprisingly, that the mutated Cys, Asp and Gln functional groups are no more than 0.8 Å further from the anomeric carbon of donor substrate compared to wild type. However, complicating the analysis is the observation that Glu303 itself plays a critical role in maintaining the stability of a strained "double-turn" in the active site through several hydrogen bonds, and any mutation other than E303Q leads to significantly higher thermal motion or even disorder in the substrate recognition pockets. Thus, there is a remarkable juxtaposition of the mutants E303C and E303D, which retain significant activity despite disrupted active site architecture, with GTB/E303Q, which maintains active site architecture but exhibits zero activity. These findings indicate that nucleophilicity at position 303 is more catalytically valuable than active site stability and highlight the mechanistic elasticity of these enzymes.


Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/genética , Galactosiltransferases/genética , Sistema ABO de Grupos Sanguíneos/química , Sistema ABO de Grupos Sanguíneos/imunologia , Sequência de Aminoácidos/genética , Antígenos de Grupos Sanguíneos/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Galactosiltransferases/química , Humanos , Ligação de Hidrogênio , Cinética , Mutação , Mutação Puntual , Especificidade por Substrato
4.
J Biol Chem ; 290(45): 27040-27052, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26374898

RESUMO

Homologous glycosyltransferases α-(1→3)-N-acetylgalactosaminyltransferase (GTA) and α-(1→3)-galactosyltransferase (GTB) catalyze the final step in ABO(H) blood group A and B antigen synthesis through sugar transfer from activated donor to the H antigen acceptor. These enzymes have a GT-A fold type with characteristic mobile polypeptide loops that cover the active site upon substrate binding and, despite intense investigation, many aspects of substrate specificity and catalysis remain unclear. The structures of GTA, GTB, and their chimeras have been determined to between 1.55 and 1.39 Å resolution in complex with natural donors UDP-Gal, UDP-Glc and, in an attempt to overcome one of the common problems associated with three-dimensional studies, the non-hydrolyzable donor analog UDP-phosphono-galactose (UDP-C-Gal). Whereas the uracil moieties of the donors are observed to maintain a constant location, the sugar moieties lie in four distinct conformations, varying from extended to the "tucked under" conformation associated with catalysis, each stabilized by different hydrogen bonding partners with the enzyme. Further, several structures show clear evidence that the donor sugar is disordered over two of the observed conformations and so provide evidence for stepwise insertion into the active site. Although the natural donors can both assume the tucked under conformation in complex with enzyme, UDP-C-Gal cannot. Whereas UDP-C-Gal was designed to be "isosteric" with natural donor, the small differences in structure imposed by changing the epimeric oxygen atom to carbon appear to render the enzyme incapable of binding the analog in the active conformation and so preclude its use as a substrate mimic in GTA and GTB.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Galactosiltransferases/química , N-Acetilgalactosaminiltransferases/química , Sistema ABO de Grupos Sanguíneos/genética , Sistema ABO de Grupos Sanguíneos/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Humanos , Ligação de Hidrogênio , Hidrólise , Modelos Moleculares , Mimetismo Molecular , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Estereoisomerismo , Especificidade por Substrato
5.
Proc Natl Acad Sci U S A ; 107(22): 10056-61, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20479270

RESUMO

Aberrant glycosylation and the overexpression of certain carbohydrate moieties is a consistent feature of cancers, and tumor-associated oligosaccharides are actively investigated as targets for immunotherapy. One of the most common aberrations in glycosylation patterns is the presentation of a single O-linked N-acetylgalactosamine on a threonine or serine residue known as the "Tn antigen." Whereas the ubiquitous nature of Tn antigens on cancers has made them a natural focus of vaccine research, such carbohydrate moieties are not always tumor-specific and have been observed on embryonic and nonmalignant adult tissue. Here we report the structural basis of binding of a complex of a monoclonal antibody (237mAb) with a truly tumor-specific glycopeptide containing the Tn antigen. In contrast to glycopeptide-specific antibodies in complex with simple peptides, 237mAb does not recognize a conformational epitope induced in the peptide by sugar substitution. Instead, 237mAb uses a pocket coded by germ-line genes to completely envelope the carbohydrate moiety itself while interacting with the peptide moiety in a shallow groove. Thus, 237mAb achieves its striking tumor specificity, with no observed physiological cross-reactivity to the unglycosylated peptide or the free glycan, by a combination of multiple weak but specific interactions to both the peptide and to the glycan portions of the antigen.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Animais , Anticorpos Monoclonais , Afinidade de Anticorpos , Especificidade de Anticorpos , Complexo Antígeno-Anticorpo/química , Cristalografia por Raios X , Epitopos/química , Glicopeptídeos/química , Glicopeptídeos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Técnicas In Vitro , Camundongos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Eletricidade Estática , Ressonância de Plasmônio de Superfície
7.
Biochemistry ; 49(3): 570-81, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20000757

RESUMO

The structures of antigen-binding fragments from two related monoclonal antibodies have been determined to high resolution in the presence of several carbohydrate antigens raised against chlamydial lipopolysaccharide. With the exception of CDR H3, antibodies S54-10 and S73-2 are both derived from the same set of germline gene segments as the previously reported structures S25-2 and S45-18. Despite this similarity, the antibodies differ in specificity and the mechanism by which they recognize their cognate antigen. S54-10 uses an unrelated CDR H3 to recognize its antigen in a fashion analogous to S45-18; however, S73-2 recognizes the same antigen as S45-18 and S54-10 in a wholly unrelated manner. Together, these antibody-antigen structures provide snapshots into how the immune system uses the same set of inherited germline gene segments to generate multiple possible specificities that allow for differential recognition of epitopes and how unrelated CDR H3 sequences can result in convergent binding of clinically relevant bacterial antigens.


Assuntos
Anticorpos Antibacterianos/química , Anticorpos Monoclonais/química , Antígenos de Bactérias/química , Chlamydiaceae/imunologia , Epitopos/química , Lipopolissacarídeos/imunologia , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Sítios de Ligação , Epitopos/imunologia , Lipopolissacarídeos/química , Modelos Moleculares , Conformação Proteica
8.
J Mol Biol ; 402(2): 399-411, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20655926

RESUMO

A common feature in the structures of GT-A-fold-type glycosyltransferases is a mobile polypeptide loop that has been observed to participate in substrate recognition and enclose the active site upon substrate binding. This is the case for the human ABO(H) blood group B glycosyltransferase GTB, where amino acid residues 177-195 display significantly higher levels of disorder in the unliganded state than in the fully liganded state. Structural studies of mutant enzymes GTB/C80S/C196S and GTB/C80S/C196S/C209S at resolutions ranging from 1.93 to 1.40 A display the opposite trend, where the unliganded structures show nearly complete ordering of the mobile loop residues that is lost upon substrate binding. In the liganded states of the mutant structures, while the UDP moiety of the donor molecule is observed to bind in the expected location, the galactose moiety is observed to bind in a conformation significantly different from that observed for the wild-type chimeric structures. Although this would be expected to impede catalytic turnover, the kinetics of the transfer reaction are largely unaffected. These structures demonstrate that the enzymes bind the donor in a conformation more similar to the dominant solution rotamer and facilitate its gyration into the catalytically competent form. Further, by preventing active-site closure, these structures provide a basis for recently observed cooperativity in substrate binding. Finally, the mutation of C80S introduces a fully occupied UDP binding site at the enzyme dimer interface that is observed to be dependent on the binding of H antigen acceptor analog.


Assuntos
Substituição de Aminoácidos/genética , Domínio Catalítico , Cisteína/genética , Galactosiltransferases/química , Galactosiltransferases/metabolismo , Mutação de Sentido Incorreto , Serina/genética , Sistema ABO de Grupos Sanguíneos/metabolismo , Cristalografia por Raios X , Galactosiltransferases/genética , Humanos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Difosfato de Uridina/metabolismo
9.
J Biol Chem ; 283(15): 10097-108, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18192272

RESUMO

The final step in the enzymatic synthesis of the ABO(H) blood group A and B antigens is catalyzed by two closely related glycosyltransferases, an alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and an alpha-(1-->3)-galactosyltransferase (GTB). Of their 354 amino acid residues, GTA and GTB differ by only four "critical" residues. High resolution structures for GTB and the GTA/GTB chimeric enzymes GTB/G176R and GTB/G176R/G235S bound to a panel of donor and acceptor analog substrates reveal "open," "semi-closed," and "closed" conformations as the enzymes go from the unliganded to the liganded states. In the open form the internal polypeptide loop (amino acid residues 177-195) adjacent to the active site in the unliganded or H antigen-bound enzymes is composed of two alpha-helices spanning Arg(180)-Met(186) and Arg(188)-Asp(194), respectively. The semi-closed and closed forms of the enzymes are generated by binding of UDP or of UDP and H antigen analogs, respectively, and show that these helices merge to form a single distorted helical structure with alternating alpha-3(10)-alpha character that partially occludes the active site. The closed form is distinguished from the semi-closed form by the ordering of the final nine C-terminal residues through the formation of hydrogen bonds to both UDP and H antigen analogs. The semi-closed forms for various mutants generally show significantly more disorder than the open forms, whereas the closed forms display little or no disorder depending strongly on the identity of residue 176. Finally, the use of synthetic analogs reveals how H antigen acceptor binding can be critical in stabilizing the closed conformation. These structures demonstrate a delicately balanced substrate recognition mechanism and give insight on critical aspects of donor and acceptor specificity, on the order of substrate binding, and on the requirements for catalysis.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Galactosiltransferases/química , N-Acetilgalactosaminiltransferases/química , Sistema ABO de Grupos Sanguíneos/genética , Sistema ABO de Grupos Sanguíneos/metabolismo , Substituição de Aminoácidos , Catálise , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Humanos , Ligação de Hidrogênio , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato/fisiologia , Difosfato de Uridina/química , Difosfato de Uridina/metabolismo
10.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 8): 860-5, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17642512

RESUMO

The human ABO(H) blood-group antigens are oligosaccharide structures that are expressed on erythrocyte and other cell surfaces. The terminal carbohydrate residue differs between the blood types and determines the immune reactivity of this antigen. Individuals with blood type A have a terminal N-acetylgalactosamine residue and those with blood type B have a terminal galactose residue. The attachment of these terminal carbohydrates are catalyzed by two different glycosyltransferases: an alpha(1-->3)N-acetylgalactosaminyltransferase (GTA) and an alpha(1-->3)galactosyltransferase (GTB) for blood types A and B, respectively. GTA and GTB are homologous enzymes that differ in only four of 354 amino-acid residues (Arg/Gly176, Gly/Ser235, Leu/Met266 and Gly/Ala268 in GTA and GTB, respectively). Diffraction-quality crystals of GTA and GTB have previously been grown from as little as 10 mg ml(-1) stock solutions in the presence of Hg, while diffraction-quality crystals of the native enzymes require much higher concentrations of protein. The structure of a single mutant C209A has been determined in the presence and absence of heavy atoms and reveals that when mercury is complexed with Cys209 it forces a significant level of disorder in a polypeptide loop (amino acids 179-195) that is known to cover the active site of the enzyme. The observation that the more highly disordered structure is more amenable to crystallization is surprising and the derivative provides insight into the mobility of this polypeptide loop compared with homologous enzymes.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Sistema ABO de Grupos Sanguíneos/metabolismo , Galactosiltransferases/química , Galactosiltransferases/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Sistema ABO de Grupos Sanguíneos/genética , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Cisteína/genética , Cisteína/metabolismo , Galactosiltransferases/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Peptídeos/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína
11.
J Biol Chem ; 282(13): 9564-9570, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17259183

RESUMO

Human blood group A and B antigens are produced by two closely related glycosyltransferase enzymes. An N-acetylgalactosaminyltransferase (GTA) utilizes UDP-GalNAc to extend H antigen acceptors (Fuc alpha(1-2)Gal beta-OR) producing A antigens, whereas a galactosyltransferase (GTB) utilizes UDP-Gal as a donor to extend H structures producing B antigens. GTA and GTB have a characteristic (211)DVD(213) motif that coordinates to a Mn(2+) ion shown to be critical in donor binding and catalysis. Three GTB mutants, M214V, M214T, and M214R, with alterations adjacent to the (211)DVD(213) motif have been identified in blood banking laboratories. From serological phenotyping, individuals with the M214R mutation show the B(el) variant expressing very low levels of B antigens, whereas those with M214T and M214V mutations give rise to A(weak)B phenotypes. Kinetic analysis of recombinant mutant GTB enzymes revealed that M214R has a 1200-fold decrease in k(cat) compared with wild type GTB. The crystal structure of M214R showed that DVD motif coordination to Mn(2+) was disrupted by Arg-214 causing displacement of the metal by a water molecule. Kinetic characterizations of the M214T and M214V mutants revealed they both had GTA and GTB activity consistent with the serology. The crystal structure of the M214T mutant showed no change in DVD coordination to Mn(2+). Instead a critical residue, Met-266, which is responsible for determining donor specificity, had adopted alternate conformations. The conformation with the highest occupancy opens up the active site to accommodate the larger A-specific donor, UDP-GalNAc, accounting for the dual specificity.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Sistema ABO de Grupos Sanguíneos/genética , Galactosiltransferases/química , Galactosiltransferases/genética , Motivos de Aminoácidos/genética , Substituição de Aminoácidos/genética , Catálise , Cristalografia por Raios X , Galactosiltransferases/sangue , Humanos , Metionina/genética , Metionina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato/genética
12.
J Biol Chem ; 281(6): 3625-32, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16326711

RESUMO

The human ABO(H) blood group A and B antigens are generated by the homologous glycosyltransferases A (GTA) and B (GTB), which add the monosaccharides GalNAc and Gal, respectively, to the cell-surface H antigens. In the first comprehensive structural study of the recognition by a glycosyltransferase of a panel of substrates corresponding to acceptor fragments, 14 high resolution crystal structures of GTA and GTB have been determined in the presence of oligosaccharides corresponding to different segments of the type I (alpha-l-Fucp-(1-->2)-beta-D-Galp-(1-->3)-beta-D-GlcNAcp-OR, where R is a glycoprotein or glycolipid in natural acceptors) and type II (alpha-l-Fucp-(1-->2)-beta-D-Galp-(1-->4)-beta-d-GlcNAcp-OR) H antigen trisaccharides. GTA and GTB differ in only four "critical" amino acid residues (Arg/Gly-176, Gly/Ser-235, Leu/Met-266, and Gly/Ala-268). As these enzymes both utilize the H antigen acceptors, the four critical residues had been thought to be involved strictly in donor recognition; however, we now report that acceptor binding and subsequent transfer are significantly influenced by two of these residues: Gly/Ser-235 and Leu/Met-266. Furthermore, these structures show that acceptor recognition is dominated by the central Gal residue despite the fact that the L-Fuc residue is required for efficient catalysis and give direct insight into the design of model inhibitors for GTA and GTB.


Assuntos
Regulação da Expressão Gênica , Sistema ABO de Grupos Sanguíneos , Antígenos/química , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Elétrons , Galactosiltransferases/química , Glicina/química , Glicolipídeos/química , Glicosiltransferases/química , Humanos , Cinética , Leucina/química , Modelos Químicos , Modelos Moleculares , Monossacarídeos/química , Oligossacarídeos/química , Ligação Proteica , Proteínas/química , Trissacarídeos/química
13.
J Biol Chem ; 280(1): 525-9, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-15475562

RESUMO

The human ABO(H) blood group antigens are carbohydrate structures generated by glycosyltransferase enzymes. Glycosyltransferase A (GTA) uses UDP-GalNAc as a donor to transfer a monosaccharide residue to Fuc alpha1-2Gal beta-R (H)-terminating acceptors. Similarly, glycosyltransferase B (GTB) catalyzes the transfer of a monosaccharide residue from UDP-Gal to the same acceptors. These are highly homologous enzymes differing in only four of 354 amino acids, Arg/Gly-176, Gly/Ser-235, Leu/Met-266, and Gly/Ala-268. Blood group O usually stems from the expression of truncated inactive forms of GTA or GTB. Recently, an O(2) enzyme was discovered that was a full-length form of GTA with three mutations, P74S, R176G, and G268R. We showed previously that the R176G mutation increased catalytic activity with minor effects on substrate binding. Enzyme kinetics and high resolution structural studies of mutant enzymes based on the O(2) blood group transferase reveal that whereas the P74S mutation in the stem region of the protein does not appear to play a role in enzyme inactivation, the G268R mutation completely blocks the donor GalNAc-binding site leaving the acceptor binding site unaffected.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Galactosiltransferases/química , N-Acetilgalactosaminiltransferases/química , Sistema ABO de Grupos Sanguíneos/genética , Sistema ABO de Grupos Sanguíneos/metabolismo , Sítios de Ligação , Ativação Enzimática , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Humanos , Modelos Moleculares , Mutação , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
14.
J Biol Chem ; 278(49): 49191-5, 2003 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-12972418

RESUMO

Human ABO(H) blood group glycosyltransferases GTA and GTB catalyze the final monosaccharide addition in the biosynthesis of the human A and B blood group antigens. GTA and GTB utilize a common acceptor, the H antigen disaccharide alpha-l-Fucp-(1-->2)-beta-d-Galp-OR, but different donors, where GTA transfers GalNAc from UDP-GalNAc and GTB transfers Gal from UDP-Gal. GTA and GTB are two of the most homologous enzymes known to transfer different donors and differ in only 4 amino acid residues, but one in particular (Leu/Met-266) has been shown to dominate the selection between donor sugars. The structures of the A and B glycosyltransferases have been determined to high resolution in complex with two inhibitory acceptor analogs alpha-l-Fucp(1-->2)-beta-d-(3-deoxy)-Galp-OR and alpha-l-Fucp-(1-->2)-beta-d-(3-amino)-Galp-OR, in which the 3-hydroxyl moiety of the Gal ring has been replaced by hydrogen or an amino group, respectively. Remarkably, although the 3-deoxy inhibitor occupies the same conformation and position observed for the native H antigen in GTA and GTB, the 3-amino analog is recognized differently by the two enzymes. The 3-amino substitution introduces a novel intramolecular hydrogen bond between O2' on Fuc and N3' on Gal, which alters the minimum-energy conformation of the inhibitor. In the absence of UDP, the 3-amino analog can be accommodated by either GTA or GTB with the l-Fuc residue partially occupying the vacant UDP binding site. However, in the presence of UDP, the analog is forced to abandon the intramolecular hydrogen bond, and the l-Fuc residue is shifted to a less ordered conformation. Further, the residue Leu/Met-266 that was thought important only in distinguishing between donor substrates is observed to interact differently with the 3-amino acceptor analog in GTA and GTB. These observations explain why the 3-deoxy analog acts as a competitive inhibitor of the glycosyltransferase reaction, whereas the 3-amino analog displays complex modes of inhibition.


Assuntos
Sistema ABO de Grupos Sanguíneos , Galactosiltransferases/metabolismo , Galactosiltransferases/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica
15.
Nat Struct Biol ; 9(9): 685-90, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12198488

RESUMO

The human ABO(H) blood group antigens are produced by specific glycosyltransferase enzymes. An N-acetylgalactosaminyltransferase (GTA) uses a UDP-GalNAc donor to convert the H-antigen acceptor to the A antigen, whereas a galactosyltransferase (GTB) uses a UDP-galactose donor to convert the H-antigen acceptor to the B antigen. GTA and GTB differ only in the identity of four critical amino acid residues. Crystal structures at 1.8-1.32 A resolution of the GTA and GTB enzymes both free and in complex with disaccharide H-antigen acceptor and UDP reveal the basis for donor and acceptor specificity and show that only two of the critical amino acid residues are positioned to contact donor or acceptor substrates. Given the need for stringent stereo- and regioselectivity in this biosynthesis, these structures further demonstrate that the ability of the two enzymes to distinguish between the A and B donors is largely determined by a single amino acid residue.


Assuntos
Sistema ABO de Grupos Sanguíneos , Galactosiltransferases/química , N-Acetilgalactosaminiltransferases/química , Cristalografia por Raios X , Galactosiltransferases/biossíntese , Galactosiltransferases/metabolismo , Humanos , Modelos Moleculares , N-Acetilgalactosaminiltransferases/biossíntese , N-Acetilgalactosaminiltransferases/metabolismo , Conformação Proteica , Especificidade por Substrato , Difosfato de Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA