Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glycobiology ; 34(3)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224318

RESUMO

GNE myopathy (GNEM) is a late-onset muscle atrophy, caused by mutations in the gene for the key enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). With an incidence of one to nine cases per million it is an ultra-rare, so far untreatable, autosomal recessive disease. Several attempts have been made to treat GNEM patients by oral supplementation with sialic acid precursors (e.g. N-acetylmannosamine, ManNAc) to restore sarcolemmal sialylation and muscle strength. In most studies, however, no significant improvement was observed. The lack of a suitable mouse model makes it difficult to understand the exact pathomechanism of GNEM and many years of research have failed to identify the role of GNE in skeletal muscle due to the lack of appropriate tools. We established a CRISPR/Cas9-mediated Gne-knockout cell line using murine C2C12 cells to gain insight into the actual role of the GNE enzyme and sialylation in a muscular context. The main aspect of this study was to evaluate the therapeutic potential of ManNAc and N-acetylneuraminic acid (Neu5Ac). Treatment of Gne-deficient C2C12 cells with Neu5Ac, but not with ManNAc, showed a restoration of the sialylation level back to wild type levels-albeit only with long-term treatment, which could explain the rather low therapeutic potential. We furthermore highlight the importance of sialic acids on myogenesis, for C2C12 Gne-knockout myoblasts lack the ability to differentiate into mature myotubes.


Assuntos
Miopatias Distais , Hexosaminas , Ácido N-Acetilneuramínico , Ácidos Siálicos , Humanos , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Desenvolvimento Muscular/genética , Suplementos Nutricionais
2.
Biol Chem ; 402(7): 849-859, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33725749

RESUMO

Meningiomas are the most common non-malignant intracranial tumors. Like most tumors, meningiomas prefer anaerobic glycolysis for energy production (Warburg effect). This leads to an increased synthesis of the metabolite methylglyoxal (MGO). This metabolite is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation endproducts (AGEs). In this study, we investigated the influence of glycation on two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO grade III (IOMM-Lee). Increasing MGO concentrations led to the formation of AGEs and decreased growth in both cell lines. When analyzing the influence of glycation on adhesion, chemotaxis and invasion, we could show that the glycation of meningioma cells resulted in increased invasive potential of the benign meningioma cell line, whereas the invasive potential of the malignant cell line was reduced. In addition, glycation increased the E-cadherin- and decreased the N-cadherin-expression in BEN-MEN-1 cells, but did not affect the cadherin-expression in IOMM-Lee cells.


Assuntos
Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Adesão Celular , Sobrevivência Celular , Produtos Finais de Glicação Avançada/metabolismo , Glicólise , Humanos , Neoplasias Meníngeas/patologia , Meningioma/patologia , Aldeído Pirúvico/metabolismo , Células Tumorais Cultivadas
3.
Biol Chem ; 400(2): 219-226, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30138107

RESUMO

The balance between protein synthesis and degradation regulates the amount of expressed proteins. This protein turnover is usually quantified as the protein half-life time. Several studies suggest that protein degradation decreases with age and leads to increased deposits of damaged and non-functional proteins. Glycation is an age-dependent, non-enzymatic process leading to posttranslational modifications, so-called advanced glycation endproducts (AGE), which usually damage proteins and lead to protein aggregation. AGE are formed by the Maillard reaction, where carbonyls of carbohydrates or metabolites react with amino groups of proteins. In this study, we quantified the half-life time of two important receptors of the immunoglobulin superfamily, the neural cell adhesion molecule (NCAM) and the receptor for advanced glycation end products (RAGE) before and after glycation. We found, that in two rat PC12 cell lines glycation leads to increased turnover, meaning that glycated, AGE-modified proteins are degraded faster than non-glycated proteins. NCAM is the most prominent carrier of a unique enzymatic posttranslational modification, the polysialylation. Using two PC12 cell lines (a non-polysialylated and a polysialylated one), we could additionally demonstrate, that polysialylation of NCAM has an impact on its turnover and that it significantly increases its half-life time.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Glicosilação , Meia-Vida , Células PC12 , Ratos
4.
Int J Mol Sci ; 20(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817246

RESUMO

Aging represents the accumulation of changes in an individual over time, encompassing physical, psychological, and social changes. Posttranslational modifications of proteins such as glycosylation, including sialylation or glycation, are proposed to be involved in this process, since they modulate a variety of molecular and cellular functions. In this study, we analyzed selected posttranslational modifications and the respective proteins on which they occur in young and old mouse brains. The expression of neural cell adhesion molecule (NCAM), receptor for advanced glycation endproducts (RAGE), as well as the carbohydrate-epitopes paucimannose and high-mannose, polysialic acid, and O-GlcNAc were examined. We demonstrated that mannose-containing glycans increased on glycoproteins in aged mouse brains and identified synapsin-1 as one major carrier of paucimannose in aged brains. In addition, we found an accumulation of so-called advanced glycation endproducts, which are generated by non-enzymatic reactions and interfere with protein function. Furthermore, we analyzed the expression of sialic acid and found also an increase during aging.


Assuntos
Envelhecimento , Encéfalo/metabolismo , Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Produtos Finais de Glicação Avançada/metabolismo , Glicoproteínas/análise , Glicosilação , Masculino , Manose/química , Manose/metabolismo , Espectrometria de Massas , Camundongos , Ácido N-Acetilneuramínico/análise , Moléculas de Adesão de Célula Nervosa/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo
5.
Chembiochem ; 18(13): 1188-1193, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27966821

RESUMO

Sialuria is a rare autosomal dominant disorder of mammalian metabolism, caused by defective feedback inhibition of the UDP-N-acetylglucosamine-2-epimerase N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. Sialuria is characterized by overproduction of free sialic acid in the cell cytoplasm. Patients exhibit vastly increased urinary excretion of sialic acid and show differently pronounced developmental delays. The physiopathology of sialuria is not well understood. Here we established a transgenic mouse line that expresses GNE containing the sialuria mutation R263L, in order to investigate the influence of an altered sialic acid concentration on the organism. The transgenic mice that expressed the mutated RNA excreted up to 400 times more N-acetylneuraminic acid than wild-type mice. Additionally, we found higher sialic acid concentration in the brain cytoplasm. Analyzing the (poly)sialylation of neural cell adhesion molecule (NCAM) revealed increased polysialylation in brains of transgenic mice compared to wild-type. However, we found only minor changes in membrane-bound sialylation in various organs but, surprisingly, a significant increase in surface sialylation on leukocytes. Our results suggest that the intracellular sialic acid concentration regulates polysialylation on NCAM in vivo; this could play a role in the manifestation of the developmental delays in sialuria patients.


Assuntos
Leucócitos/metabolismo , Complexos Multienzimáticos/genética , Ácido N-Acetilneuramínico/urina , Moléculas de Adesão de Célula Nervosa/metabolismo , Processamento de Proteína Pós-Traducional , Doença do Armazenamento de Ácido Siálico/metabolismo , Fatores Etários , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Retroalimentação Fisiológica , Humanos , Leucócitos/patologia , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Complexos Multienzimáticos/deficiência , Mutação , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/genética , Especificidade de Órgãos , Doença do Armazenamento de Ácido Siálico/genética , Doença do Armazenamento de Ácido Siálico/patologia
6.
Molecules ; 20(1): 1003-13, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25584831

RESUMO

Nimodipine is a Ca2+-channel antagonist mainly used for the management of aneurysmal subarachnoid hemorrhage (aSAH) to prevent cerebral vasospasms. However, it is not clear if the better outcome of nimodipine-treated patients is mainly due to vasodilatation or whether other cellular neuroprotective or neuregenerative effects of nimodipine are involved. We analysed PC12 cells after different stress stimuli with or without nimodipine pretreatment. Cytotoxicity of 200 mM EtOH and osmotic stress (450 mosmol/L) was significantly reduced with nimodipine pretreatment, while nimodipine has no influence on the hypoxia-induced cytotoxicity in PC12 cells. The presence of nimodipine also increased the NGF-induced neurite outgrowth in PC12 cells. However, nimodipine alone was not able to induce neurite outgrowth in PC12 cells. These results support the idea that nimodipine has general neuroprotective or neuregenerative effect beside its role in vasodilatation and is maybe useful also in other clinical applications beside aSAH.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Modelos Biológicos , Regeneração Nervosa/efeitos dos fármacos , Neuritos/metabolismo , Fármacos Neuroprotetores/farmacologia , Nimodipina/química , Animais , Cálcio/metabolismo , Dimetil Sulfóxido/farmacologia , Neuritos/efeitos dos fármacos , Nimodipina/farmacologia , Oxigênio/farmacologia , Células PC12 , Ratos , Cloreto de Sódio/farmacologia
7.
Int J Mol Sci ; 15(10): 18453-65, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25318050

RESUMO

Nimodipine is well characterized for the management of SAH (subarachnoid hemorrhage) and has been shown to promote a better outcome and less DIND (delayed ischemic neurological deficits). In rat experiments, enhanced axonal sprouting and higher survival of motoneurons was demonstrated after cutting or crushing the facial nerve by nimodipine. These results were confirmed in clinical trials following vestibular Schwannoma surgery. The mechanism of the protective competence of nimodipine is unknown. Therefore, in this study, we established an in vitro model to examine the survival of Neuro2a cells after different stress stimuli occurring during surgery with or without nimodipine. Nimodipine significantly decreased ethanol-induced cell death of cells up to approximately 9% in all tested concentrations. Heat-induced cell death was diminished by approximately 2.5% by nimodipine. Cell death induced by mechanical treatment was reduced up to 15% by nimodipine. Our findings indicate that nimodipine rescues Neuro2a cells faintly, but significantly, from ethanol-, heat- and mechanically-induced cell death to different extents in a dosage-dependent manner. This model seems suitable for further investigation of the molecular mechanisms involved in the neuroprotective signal pathways influenced by nimodipine.


Assuntos
Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nimodipina/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Etanol/toxicidade , Temperatura Alta , Ratos , Estresse Mecânico , Hemorragia Subaracnóidea/tratamento farmacológico
8.
Neurochem Res ; 38(6): 1229-35, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23377853

RESUMO

The neural cell adhesion molecule NCAM is a major adhesion receptor involved in the development and regeneration of the nervous system. It is expressed in three major isoforms of which two have large intracellular domains of different lengths (NCAM140 and NCAM180). Several intracellular ligands of NCAM have been described. One of them is the collapsin response mediator protein-2 (CRMP-2), which is known to be involved in cell differentiation and axonal growth. The cytoplasmic domains of NCAM contain up to 49 phosphorylation sites and it has been demonstrated recently that the phosphorylation of serine 774 is crucial for NCAM-mediated signal transduction and neurite outgrowth. Here we analyzed the interaction of NCAM with CRMP-2 in more detail using a biochemical approach. We found that CRMP-2 binds specifically to NCAM180 in a sequence between amino acid 788 and 819. In addition we could demonstrate that serine 774, which has been shown previously to be phosphorylated and involved in neurite outgrowth, is also important for the interaction of CRMP-2 with NCAM.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Serina/metabolismo , Animais , Sítios de Ligação , Fosforilação , Ratos , Proteínas Recombinantes de Fusão/metabolismo
9.
Front Biosci (Landmark Ed) ; 28(11): 300, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38062838

RESUMO

BACKGROUND: A key mechanism in the neuromuscular disease GNE myopathy (GNEM) is believed to be that point mutations in the GNE gene impair sialic acid synthesis - maybe due to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) activity restrictions - and resulting in muscle tissue loss. N-acetylmannosamine (ManNAc) is the first product of the bifunctional GNE enzyme and can therefore be regarded as a precursor of sialic acids. This study investigates whether this is also a suitable substance for restoring the sialic acid content in GNE-deficient cells. METHODS: A HEK-293 GNE-knockout cell line was generated using CRISPR-Cas9 and analyzed for its ability to synthesize sialic acids. The cells were then supplemented with ManNAc to compensate for possible GNE inactivity and thereby restore sialic acid synthesis. Sialic acid levels were monitored by immunoblot and high performance liquid chromatography (HPLC). RESULTS: The HEK-293 GNE-knockout cells showed almost no polysialylation signal (immunoblot) and a reduced overall (-71%) N-acetylneuraminic acid (Neu5Ac) level (HPLC) relative to total protein and normalized to wild type level. Supplementation of GNE-deficient HEK-293 cells with 2 mM ManNAc can restore polysialylation and free intracellular sialic acid levels to wild type levels. The addition of 1 mM ManNAc is sufficient to restore the membrane-bound sialic acid level. CONCLUSIONS: Although the mechanism behind this needs further investigation and although it remains unclear why adding ManNAc to GNE-deficient cells is sufficient to elevate polysialylation back to wild type levels - since this substance is also converted by the GNE, all of this might yet prove helpful in the development of an appropriate therapy for GNEM.


Assuntos
Miopatias Distais , Ácido N-Acetilneuramínico , Ácidos Siálicos , Humanos , Células HEK293 , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Doenças Neuromusculares/tratamento farmacológico , Doenças Neuromusculares/genética , Miopatias Distais/tratamento farmacológico , Miopatias Distais/genética
10.
Biomolecules ; 13(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36979358

RESUMO

Mutations in the gene coding for the bi-functional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of the sialic acid biosynthesis, are responsible for autosomal-recessive GNE myopathy (GNEM). GNEM is an adult-onset disease with a yet unknown exact pathophysiology. Since the protein appears to work adequately for a certain period of time even though the mutation is already present, other effects appear to influence the onset and progression of the disease. In this study, we want to investigate whether the late onset of GNEM is based on an age-related effect, e.g., the accumulation of post-translational modifications (PTMs). Furthermore, we also want to investigate what effect on the enzyme activity such an accumulation would have. We will particularly focus on glycation, which is a PTM through non-enzymatic reactions between the carbonyl groups (e.g., of methylglyoxal (MGO) or glyoxal (GO)) with amino groups of proteins or other biomolecules. It is already known that the levels of both MGO and GO increase with age. For our investigations, we express each domain of the GNE separately, treat them with one of the glycation agents, and determine their activity. We demonstrate that the enzymatic activity of the N-acetylmannosamine kinase (GNE-kinase domain) decreases dramatically after glycation with MGO or GO-with a remaining activity of 13% ± 5% (5 mM MGO) and 22% ± 4% (5 mM GO). Whereas the activity of the UDP-N-acetylglucosamine 2-epimerase (GNE-epimerase domain) is only slightly reduced after glycation-with a remaining activity of 60% ± 8% (5 mM MGO) and 63% ± 5% (5 mM GO).


Assuntos
Óxido de Magnésio , Reação de Maillard , Mutação
11.
J Neurosci Res ; 90(8): 1577-82, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22419107

RESUMO

The neural cell adhesion molecule (NCAM) plays a fundamental role during development and regeneration. NCAM is expressed in three major isoforms, two of them with intracellular domains of different length and one without any intracellular domain. The cytoplasmic domain of NCAM contains, depending on the isoform, up to 49 phosphorylation sites, and it has been demonstrated previously by phosphoproteomic analysis that NCAM is phosphorylated on serine 774. However, the impact of NCAM phosphorylation is unclear. Here we have analyzed the phosphorylation of serine 774 in more detail and found that phosphorylation of this site is crucial for NCAM-mediated signal transduction. A serine-to-alanine exchange at position 774 (NCAM140-S774A) resulted in decreased activation of the cAMP response element binding protein (CREB) after NCAM stimulation and, as a consequence, in decreased neurite outgrowth of NCAM140-S774A-transfected B35 neuroblastoma cells.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Neurogênese/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Immunoblotting , Imunoprecipitação , Mutagênese Sítio-Dirigida , Fosforilação , Ratos , Serina/metabolismo , Transfecção
12.
Biol Chem ; 393(8): 777-83, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22944680

RESUMO

During the last years, the use of therapeutic glycoproteins has increased strikingly. Glycosylation of recombinant glycoproteins is of major importance in biotechnology, as the glycan composition of recombinant glycoproteins impacts their pharmacological properties. The terminal position of N-linked complex glycans in mammals is typically occupied by sialic acid. The presence of sialic acid is crucial for functionality and affects the half-life of glycoproteins. However, glycoproteins in the bloodstream become desialylated over time and are recognized by the asialoglycoprotein receptors via the exposed galactose and targeted for degradation. Non-natural sialic acid precursors can be used to engineer the glycosylation side chains by biochemically introducing new non-natural terminal sialic acids. Previously, we demonstrated that the physiological precursor of sialic acid (i.e., N-acetylmannosamine) can be substituted by the non-natural precursors N-propanoylmannosamine (ManNProp) or N-pentanoylmannosamine (ManNPent) by their simple application to the cell culture medium. Here, we analyzed the glycosylation of erythropoietin (EPO). By feeding cells with ManNProp or ManNPent, we were able to incorporate N-propanoyl or N-pentanoyl sialic acid in significant amounts into EPO. Using a degradation assay with sialidase, we observed a higher resistance of EPO to sialidase after incorporation of N-propanoyl or N-pentanoyl sialic acid.


Assuntos
Eritropoetina/química , Eritropoetina/metabolismo , Ácido N-Acetilneuramínico/análise , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Animais , Células CHO , Sequência de Carboidratos , Clostridium perfringens/enzimologia , Cricetinae , Glicosilação , Hexosaminas/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
13.
Arch Biochem Biophys ; 524(1): 56-63, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22542522

RESUMO

Polysialic acid represents a unique posttranslational modification of the neural cell adhesion molecule (NCAM). It is built as a homopolymer of up to 150 molecules of alpha 2-8-linked sialic acids on N-glycans of the fifth immunoglobulin-like domain of NCAM. Besides its role in cell migration and axonal growth during development, polysialic acids are closely related to tumor malignancy as they are linked to the malignant potential of several tumors, such as undifferentiated neuroblastoma. Polysialic acid expression is significantly more frequent in high-grade tumors than in low-grade tumors. It is synthesized in the Golgi apparatus by the activity of two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV. Interestingly, polysialylation of tumors is not equally synthesized by both polysialyltransferases. It has been shown that especially the ST8SiaII gene is not expressed in some normal tissue, but is strongly expressed in tumor tissue. Here we summarize some knowledge on the role of polysialic acid in cell migration and tumor progression and present novel evidence that interfering with polysialylation using unnatural sialic acid precursors decreases the migration of neuroblastoma cells.


Assuntos
Movimento Celular , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuroblastoma/metabolismo , Ácidos Siálicos/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/genética , Neuroblastoma/genética , Processamento de Proteína Pós-Traducional , Ácidos Siálicos/química , Ácidos Siálicos/genética
14.
Proteomes ; 10(3)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35997440

RESUMO

BACKGROUND: Propofol is a short-acting anesthetic, which is often used for induction and maintenance of general anesthesia, sedation for mechanically ventilated adults and procedural sedation. Several side effects of propofol are known and a substantial number of patients suffer from post-operative delirium after propofol application. In this study, we analyzed the effect of propofol on the function and protein expression profile on a proteome-wide scale. METHODS: We cultured human brain microvascular endothelial cells in absence and presence of propofol and analyzed the permeability of the blood-brain barrier (BBB) by fluorescein passage and protein abundance on a proteome-wide scale by mass spectrometry. RESULTS: Propofol interfered with the function of the blood-brain barrier. This was not due to decreased adhesion of propofol-treated human brain microvascular endothelial cells. The proteomic analysis revealed that some key pathways in these cells were disturbed, such as oxygen metabolism, DNA damage recognition and response to stress. CONCLUSIONS: Propofol has strong effects on protein expression which could explain several side effects of propofol.

15.
Cells ; 10(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34943806

RESUMO

Meningiomas are the most common non-malignant intracranial tumors and prefer, like most tumors, anaerobic glycolysis for energy production (Warburg effect). This anaerobic glycolysis leads to an increased synthesis of the metabolite methylglyoxal (MGO) or glyoxal (GO), which is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation end products (AGEs). In this study, we investigated the influence of glycation on sialylation in two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO grade III (IOMM-Lee). In the benign meningioma cell line, glycation led to differences in expression of sialyltransferases (ST3GAL1/2/3/5/6, ST6GAL1/2, ST6GALNAC2/6, and ST8SIA1/2), which are known to play a role in tumor progression. We could show that glycation of BEN-MEN-1 cells led to decreased expression of ST3Gal5. This resulted in decreased synthesis of the ganglioside GM3, the product of ST3Gal5. In the malignant meningioma cell line, we observed changes in expression of sialyltransferases (ST3GAL1/2/3, ST6GALNAC5, and ST8SIA1) after glycation, which correlates with less aggressive behavior.


Assuntos
Meningioma/enzimologia , Sialiltransferases/metabolismo , Linhagem Celular Tumoral , Gangliosídeo G(M3)/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Humanos , Meningioma/genética , Ácido N-Acetilneuramínico/biossíntese , Aldeído Pirúvico/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sialiltransferases/genética
16.
J Vis Exp ; (156)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32116297

RESUMO

The human blood-brain barrier (BBB) is characterized by a very low permeability for biomolecules in order to protect and regulate the metabolism of the brain. The BBB is mainly formed out of endothelial cells embedded in collagen IV and fibronectin-rich basement membranes. Several pathologies result from dysfunction of the BBB followed by microbial traversal, causing diseases such as meningitis. In order to test the effect of multiple parameters, including different drugs and anesthetics, on the permeability of the BBB we established a novel human cell culture model mimicking the BBB with human brain microvascular endothelial cells. The endothelial cells are grown on collagen IV and fibronectin-coated filter units until confluence and can then be treated with different compounds of interest. In order to demonstrate a microbial traversal, the upper chamber with the apical surface of the endothelial cells is inoculated with bacteria. After an incubation period, samples of the lower chamber are plated on agar plates and the obtained colonies are counted, whereby the number of colonies correlate with the permeability of the BBB. Endogenous cellular factors can be analyzed in this experimental set-up in order to elucidate basic cellular mechanisms of the endothelial cells contributing to the BBB. In addition, this platform allows performing a screen for compounds that might affect the permeability of the endothelial cells. Finally, bacterial traversal can be studied and linked to different pathologies, such as meningitis. It might be possible to extend the model and analyze the pathways of the bacteria through the BBB. In this article, we provide a detailed protocol of the described method to investigate the permeability of the BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/microbiologia , Células Endoteliais/microbiologia , Microvasos/citologia , Animais , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Fibronectinas/farmacologia , Glicosilação , Humanos , Permeabilidade/efeitos dos fármacos
17.
Cells ; 9(4)2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252464

RESUMO

Neuroblastoma is the second most frequent extracranial tumor, affecting young children worldwide. One hallmark of tumors such as neuroblastomas, is the expression of polysialic acid, which interferes with adhesion and may promote invasion and metastasis. Since tumor cells use glycolysis for energy production, they thereby produce as side product methylglyoxal (MGO), which reacts with proteins to advanced glycation end products in a mechanism called glycation. Here we analyzed the expression of (poly) sialic acid and adhesion of Kelly neuroblastoma cells after glycation with MGO. We found that both sialylation and polysialylation is increased after glycation. Furthermore, glycated Kelly neuroblastoma cells had a much higher potential for migration and invasion compared with non-glycated cells.


Assuntos
Glicólise/genética , Neuroblastoma/genética , Ácidos Siálicos/metabolismo , Adesão Celular , Movimento Celular , Feminino , Glicosilação , Humanos , Lactente , Masculino , Metástase Neoplásica , Neuroblastoma/patologia
18.
J Clin Med ; 9(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545211

RESUMO

Sialic acids are terminal sugars on the cell surface that are found on all cell types including immune cells like natural killer (NK) cells. The attachment of sialic acids to different glycan structures is catalyzed by sialyltransferases in the Golgi. However, the expression pattern of sialyltransferases in NK cells and their expression after activation has not yet been analyzed. Therefore, the present study determines which sialyltransferases are expressed in human NK cells and if activation with IL-2 changes the sialylation of NK cells. The expression of sialyltransferases was analyzed in the three human NK cell lines NK-92, NKL, KHYG-1 and primary NK cells. NK-92 cells were cultured in the absence or presence of IL-2, and changes in the sialyltransferase expression were measured by qPCR. Furthermore, specific sialylation was investigated by flow cytometry. In addition, polySia and NCAM were measured by Western blot analyses. IL-2 leads to a reduced expression of ST8SIA1, ST6GAL1 and ST3GAL1. α-2,3-Sialylation remained unchanged, while α-2,6-sialylation was increased after IL-2 stimulation. Moreover, an increase in the amount of NCAM and polySia was observed in IL-2-activated NK cells, whereas GD3 ganglioside was decreased. In this study, all sialyltransferases that were expressed in NK cells could be identified. IL-2 regulates the expression of some sialyltransferases and leads to changes in the sialylation of NK cells.

19.
J Clin Med ; 9(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207595

RESUMO

The function of the human blood-brain barrier (BBB), consisting mainly of the basement membrane and microvascular endothelial cells, is to protect the brain and regulate its metabolism. Dysfunction of the BBB can lead to increased permeability, which can be linked with several pathologies, including meningitis, sepsis, and postoperative delirium. Advanced glycation end products (AGE) are non-enzymatic, posttranslational modifications of proteins, which can affect their function. Increased AGE levels are strongly associated with ageing and degenerative diseases including diabetes. Several studies demonstrated that the formation of AGE interfere with the function of the BBB and may change its permeability for soluble compounds. However, it is still unclear whether AGE can facilitate microbial traversal through the BBB and how small compounds including anesthetics modulate this process. Therefore, we developed a cellular model, which allows for the convenient testing of different factors and compounds with a direct correlation to bacterial traversal through the BBB. Our results demonstrate that both glycation and anesthetics interfere with the function of the BBB and promote microbial traversal. Importantly, we also show that the essential nutrient and antioxidant ascorbic acid, commonly known as vitamin C, can reduce the microbial traversal through the BBB and partly reverse the effects of AGE.

20.
Mech Ageing Dev ; 178: 64-71, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30659859

RESUMO

One hallmark of molecular aging is glycation, better known as formation of so-called advanced glycation end products (AGEs), where reactive carbonyls react with amino-groups of proteins. AGEs accumulate over time and are responsible for various age-dependent diseases and impairments. Two very potent dicarbonyls to generate AGEs are glyoxal (GO) and methylglyoxal (MGO). The plasma level of such dicarbonyls is higher in aging and age-related diseases. Natural killer (NK) cells are cells of the innate immune system and provide a major defense against tumor cells and virus infected cells. They are able to kill modified or infected cells and produce different cytokines to modulate the function of other immune cells. Here we investigated the effect of GO- and MGO-induced glycation on the function of NK cells. Using the human NK cell line NK-92, we could demonstrate that both GO and MGO lead to glycation of cellular proteins, but that MGO interferes much stronger with NK cell function (cytotoxicity) than GO. In addition, glycation of NK cell targets, such as K562 tumor cells, also interferes with their lysis by NK cells. From this data we conclude that glycation acts negatively on NK cells function and reduces their cytotoxic potential towards tumor cells.


Assuntos
Citotoxicidade Imunológica , Produtos Finais de Glicação Avançada/metabolismo , Células Matadoras Naturais/imunologia , Envelhecimento/imunologia , Apoptose/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Glioxal/farmacologia , Humanos , Células K562 , Células Matadoras Naturais/efeitos dos fármacos , Aldeído Pirúvico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA