Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675244

RESUMO

Sleeve gastrectomy (SG) successfully recovers metabolic homeostasis in obese humans and rodents while also resulting in the normalization of insulin sensitivity and insulinemia. Reduced insulin levels have been attributed to lower insulin secretion and increased insulin clearance in individuals submitted to SG. Insulin degradation mainly occurs in the liver in a process controlled, at least in part, by the insulin-degrading enzyme (IDE). However, research has yet to explore whether liver IDE expression or activity is altered after SG surgery. In this study, C57BL/6 mice were fed a chow (CTL) or high-fat diet (HFD) for 10 weeks. Afterward, the HFD mice were randomly assigned to two groups: sham-surgical (HFD-SHAM) and SG-surgical (HFD-SG). Here, we confirmed that SG improves glucose-insulin homeostasis in obese mice. Additionally, SG reduced insulinemia by reducing insulin secretion, assessed by the analysis of plasmatic C-peptide content, and increasing insulin clearance, which was evaluated through the calculation of the plasmatic C-peptide:insulin ratio. Although no changes in hepatic IDE activity were observed, IDE expression was higher in the liver of HFD-SG compared with HFD-SHAM mice. These results indicate that SG may be helpful to counteract obesity-induced hyperinsulinemia by increasing insulin clearance, likely through enhanced liver IDE expression.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Humanos , Camundongos , Animais , Insulina/metabolismo , Camundongos Obesos , Peptídeo C , Camundongos Endogâmicos C57BL , Redução de Peso , Obesidade/etiologia , Obesidade/cirurgia , Insulina Regular Humana , Hiperinsulinismo/etiologia , Gastrectomia/métodos , Dieta Hiperlipídica/efeitos adversos
2.
FASEB J ; 35(8): e21828, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34325494

RESUMO

Since prenatal glucocorticoids (GC) excess increases the risk of metabolic dysfunctions in the offspring and its effect on ß-cell recovery capacity remains unknown we investigated these aspects in offspring from mice treated with dexamethasone (DEX) in the late pregnancy. Half of the pups were treated with streptozotocin (STZ) on the sixth postnatal day (PN). Functional and molecular analyses were performed in male offspring on PN25 and PN225. Prenatal DEX treatment resulted in low birth weight. At PN25, both the STZ-treated offspring developed hyperglycemia and had lower ß-cell mass, in parallel with higher α-cell mass and glucose intolerance, with no impact of prenatal DEX on such parameters. At PN225, the ß-cell mass was partially recovered in the STZ-treated mice, but they remained glucose-intolerant, irrespective of being insulin sensitive. Prenatal exposition to DEX predisposed adult offspring to sustained hyperglycemia and perturbed islet function (lower insulin and higher glucagon response to glucose) in parallel with exacerbated glucose intolerance. ß-cell-specific knockdown of the Hnf4α in mice from the DS group resulted in exacerbated glucose intolerance. We conclude that high GC exposure during the prenatal period exacerbates the metabolic dysfunctions in adult life of mice exposed to STZ early in life, resulting in a lesser ability to recover the islets' function over time. This study alerts to the importance of proper management of exogenous GCs during pregnancy and a healthy postnatal lifestyle since the combination of adverse factors during the prenatal and postnatal period accentuates the predisposition to metabolic disorders in adult life.


Assuntos
Dexametasona/toxicidade , Glucocorticoides/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Dexametasona/administração & dosagem , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Teste de Tolerância a Glucose , Insulina/farmacologia , Camundongos , Neoplasias Experimentais , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Adv Exp Med Biol ; 1370: 267-278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35882802

RESUMO

Adaptation of islet ß-cell mass and function under limiting or excess nutrient availability is critical for maintenance of glucose homeostasis. Taurine regulates islet function of obese mice in normal and low dietary protein conditions, but whether this involves remodeling of the endocrine pancreas architecture is not well understood. Here, we carried functional and morphometric evaluation of the endocrine pancreas of normal and protein-restricted mice fed a high-fat diet (HFD) and investigated the role of taurine supplementation. Weaned mice were placed in a normal (C) or a low-protein diet (R) for 6 weeks, followed by HFD for 8 weeks (CH and RH). Half of HFD groups received 5% taurine supplementation since weaning (CHT and RHT) until the end of the experiment. Isolated islets from both CH and RH groups showed increased insulin release in association with increased pancreas weight and independently of changes in islet or ß-cell area. In normal protein CHT mice, taurine supplementation prevented obesity-induced insulin hypersecretion and promoted increased islet and ß-cell areas in association with increased protein expression of the proliferation marker, PCNA. On a low-protein background, taurine effects on islet function and morphology were blunted, but it prevented obesity-induced DNA fragmentation. In summary, taurine regulates islet function and morphology to improve the adaptive response to diet-induced obesity, but these effects are dependent on adequate dietary protein levels.


Assuntos
Ilhotas Pancreáticas , Taurina , Animais , Dieta Hiperlipídica/efeitos adversos , Proteínas Alimentares/metabolismo , Suplementos Nutricionais , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Taurina/metabolismo , Taurina/farmacologia
4.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012692

RESUMO

Resistance training increases insulin secretion and beta cell function in healthy mice. Here, we explored the effects of resistance training on beta cell glucose sensing and survival by using in vitro and in vivo diabetic models. A pancreatic beta cell line (INS-1E), incubated with serum from trained mice, displayed increased insulin secretion, which could be linked with increased expression of glucose transporter 2 (GLUT2) and glucokinase (GCK). When cells were exposed to pro-inflammatory cytokines (in vitro type 1 diabetes), trained serum preserved both insulin secretion and GCK expression, reduced expression of proteins related to apoptotic pathways, and also protected cells from cytokine-induced apoptosis. Using 8-week-old C57BL/6 mice, turned diabetic by multiple low doses of streptozotocin, we observed that resistance training increased muscle mass and fat deposition, reduced fasting and fed glycemia, and improved glucose tolerance. These findings may be explained by the increased fasting and fed insulinemia, along with increased beta cell mass and beta cell number per islet, observed in diabetic-trained mice compared to diabetic sedentary mice. In conclusion, we believe that resistance training stimulates the release of humoral factors which can turn beta cells more resistant to harmful conditions and improve their response to a glucose stimulus.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Condicionamento Físico Animal , Treinamento Resistido , Animais , Glicemia/metabolismo , Diabetes Mellitus/metabolismo , Glucoquinase/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
5.
Eur J Nutr ; 59(3): 1067-1079, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30982179

RESUMO

PURPOSE: Obesity is predominant in women of reproductive age. Roux-en-Y gastric bypass (RYGB) is the most common bariatric procedure that is performed in obese women for weight loss and metabolic improvement. However, some studies suggest that this procedure negatively affects offspring. Herein, using Western diet (WD)-obese female rats, we investigated the effects of maternal RYGB on postnatal body development, glucose tolerance, insulin secretion and action in their adult male F1 offspring. METHODS: Female Wistar rats consumed a Western diet (WD) for 18 weeks, before being submitted to RYGB (WD-RYGB) or SHAM (WD-SHAM) operations. After 5 weeks, WD-RYGB and WD-SHAM females were mated with control male breeders, and the F1 offspring were identified as: WD-RYGB-F1 and WD-SHAM-F1. RESULTS: The male F1 offspring of WD-RYGB dams exhibited decreased BW, but enhanced total nasoanal length gain. At 120 days of age, WD-RYGB-F1 rats displayed normal fasting glycemia and glucose tolerance but demonstrated reduced insulinemia and higher glucose disappearance after insulin stimulus. In addition, these rodents presented insulin resistance in the gastrocnemius muscle and retroperitoneal fat, as judged by lower Akt phosphorylation after insulin administration, but an increase in this protein in the liver. Finally, the islets from WD-RYGB-F1 rats secreted less insulin in response to glucose and displayed increased ß-cell area and mass. CONCLUSIONS: RYGB in WD dams negatively affected their F1 offspring, leading to catch-up growth, insulin resistance in skeletal muscle and white fat, and ß-cell dysfunction. Therefore, our data are the first to demonstrate that the RYGB in female rats may aggravate the metabolic imprinting induced by maternal WD consumption, in their male F1 descendants. However, since we only used male F1 rats, further studies are necessary to demonstrate if such effect may also occur in female F1 offspring from dams that underwent RYGB operation.


Assuntos
Glicemia , Peso Corporal , Derivação Gástrica/efeitos adversos , Insulina/sangue , Pâncreas/metabolismo , Pâncreas/fisiopatologia , Animais , Feminino , Masculino , Mães , Obesidade/cirurgia , Ratos , Ratos Wistar
6.
J Cell Physiol ; 234(10): 16679-16684, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30815898

RESUMO

Malnutrition programs metabolism, favor dysfunction of ß cells. We aimed to establish an in vitro protocol of malnutrition, assessing the effect of amino acid restriction upon the ß cells. Insulin-producing cells INS-1E and pancreatic islets were maintained in RPMI 1640 medium containing 1× (Ctl) or 0.25× (AaR) of amino acids. We evaluated several markers of ß-cell function and viability. AaR Insulin secretion was reduced, whereas cell viability was unaltered. Calcium oscillations in response to glucose increased in AaR. AaR showed lower Ins1 RNAm, snap 25, and PKC (protein kinase C) protein content, whereas phospho-eIF2α was increased. AaR cells exposed to nutrient or chemical challenges displayed higher apoptosis rates. We showed that amino acid restriction programmed ß cell and induced functional changes. This model might be useful for the study of molecular mechanisms involved with ß-cell programming helping to establish novel therapeutic targets to prevent harmful outcomes of malnutrition.


Assuntos
Aminoácidos/metabolismo , Aminoácidos/farmacologia , Apoptose/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Cálcio/metabolismo , Linhagem Celular , Citoplasma/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL
7.
J Cell Physiol ; 234(5): 6313-6323, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30317568

RESUMO

Nutrient malnutrition, during the early stages of development, may facilitate the onset of metabolic diseases later in life. However, the consequences of nutritional insults, such as a high-fat diet (HFD) after protein restriction, are still controversial. We assessed overall glucose homeostasis and molecular markers of mitochondrial function in the gastrocnemius muscle of protein-restricted mice fed an HFD until early adulthood. Male C57BL/6 mice were fed a control (14% protein-control diet) or a protein-restricted (6% protein-restricted diet) diet for 6 weeks. Afterward, mice received an HFD or not for 8 weeks (mice fed a control diet and HFD [CH] and mice fed a protein-restricted diet and HFD [RH]). RH mice showed lower weight gain and fat accumulation and did not show an increase in fasting plasma glucose and insulin levels compared with CH mice. RH mice showed higher energy expenditure, increased citrate synthase, peroxisome-proliferator-activated receptor gamma coactivator 1-alpha protein content, and higher levels of malate and α-ketoglutarate compared with CH mice. Moreover, RH mice showed increased AMPc-dependent kinase and acetyl coenzyme-A (CoA) carboxylase phosphorylation, lower intramuscular triacylglycerol content, and similar malonyl-CoA levels. In conclusion, protein undernourishment after weaning does not potentiate fat accumulation and insulin resistance in adult young mice fed an HFD. This outcome seems to be associated with increased skeletal muscle mitochondrial oxidative capacity and reduced lipids accumulation.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Homeostase/fisiologia , Músculo Esquelético/metabolismo , Deficiência de Proteína/metabolismo , Animais , Metabolismo Energético/fisiologia , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo
8.
Exp Physiol ; 104(7): 1029-1037, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31025768

RESUMO

NEW FINDINGS: What is the central question of this study? Does protein restriction in early life modify glucose-induced insulin secretion by altering [Ca2+ ]i and the expression of SNARE proteins in pancreatic islets from pregnant rats? What is the main finding and its importance? Protein restriction in early life increased the first phase of glucose-induced insulin secretion and [Ca2+ ]i without altering the expression of SNARE proteins during pregnancy. This finding contributes to our understanding of the mechanisms of altered insulin secretion and might provide new perspectives for the development of therapeutic tools for gestational diabetes. ABSTRACT: We investigated the kinetics of glucose-induced insulin secretion and their relationship with [Ca2+ ]i and the expression of protein from exocytotic machinery in islets from recovered pregnant and long-term protein-deficient pregnant rats. Isolated islets were evaluated from control-fed pregnant (CP), protein-deficient pregnant (DP), control-fed non-pregnant (CNP) and protein-deficient non-pregnant (DNP) female adult rats, and from protein-deficient pregnant (RP) and non-pregnant (RNP) rats that were recovered after weaning. The insulin responses to glucose during the first phase of secretion were higher in RP than in CP groups, and both were higher than in the DP group. Islets from RP rats displayed a rapid increase in insulin release (first phase), followed by a plateau that was maintained thereafter. The [Ca2+ ]i in islets from the protein-deficient groups was lower than in the control groups, and both were lower than in the RP and RNP groups. SNAP-25 was increased in islets from pregnant rats independently of their nutritional status, and the syntaxin-1A content was reduced in islets from the RP rats compared with the RNP rats. The VAMP2 content was similar among the groups. Thus, protein restriction during intrauterine life and lactation increased insulin secretion during pregnancy, attributable, in part, to increased [Ca2+ ]i , and independent of an alteration of expression of SNARE proteins.


Assuntos
Cálcio/metabolismo , Dieta com Restrição de Proteínas/tendências , Regulação da Expressão Gênica no Desenvolvimento , Secreção de Insulina/fisiologia , Líquido Intracelular/metabolismo , Proteínas SNARE/biossíntese , Animais , Glicemia/metabolismo , Feminino , Ilhotas Pancreáticas/metabolismo , Masculino , Gravidez , Ratos , Ratos Wistar , Proteínas SNARE/genética
9.
Can J Physiol Pharmacol ; 97(11): 1018-1027, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31247150

RESUMO

ARHGAP21 is a Rho-GAP that controls GTPases activity in several tissues, but its role on liver lipid metabolism is unknown. Thus, to achieve the Rho-GAP role in the liver, control and ARHGAP21-haplodeficient mice were fed chow (Ctl and Het) or high-fat diet (Ctl-HFD and Het-HFD) for 12 weeks, and pyruvate and insulin tolerance tests, insulin signaling, liver glycogen and triglycerides content, gene and protein expression, and very-low-density lipoprotein secretion were measured. Het mice displayed reduced body weight and plasma triglycerides levels, and increased liver insulin signaling. Reduced gluconeogenesis and increased glycogen content were observed in Het-HFD mice. Gene and protein expression of microsomal triglyceride transfer protein were reduced in both Het mice, while the lipogenic genes SREBP-1c and ACC were increased. ARHGAP21 knockdown resulted in hepatic steatosis through increased hepatic lipogenesis activity coupled with decreases in CPT1a expression and very-low-density lipoprotein export. In conclusion, liver of ARHGAP21-haplodeficient mice are more insulin sensitive, associated with higher lipid synthesis and lower lipid export.


Assuntos
Proteínas Ativadoras de GTPase/deficiência , Técnicas de Inativação de Genes , Insulina/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Animais , Proteínas Ativadoras de GTPase/genética , Glucose/biossíntese , Glicogênio/metabolismo , Metabolismo dos Lipídeos/genética , Lipoproteínas VLDL/biossíntese , Lipoproteínas VLDL/metabolismo , Fígado/patologia , Camundongos , Transdução de Sinais/genética
10.
FASEB J ; 31(9): 4078-4087, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28572444

RESUMO

Taurine (Tau) restores ß-cell function in obesity; however, its action is lost in malnourished obese rodents. Here, we investigated the mechanisms involved in the lack of effects of Tau in this model. C57BL/6 mice were fed a control diet (CD) (14% protein) or a protein-restricted diet (RD) (6% protein) for 6 wk. Afterward, mice received a high-fat diet (HFD) for 8 wk [CD + HFD (CH) and RD + HFD (RH)] with or without 5% Tau supplementation after weaning on their drinking water [CH + Tau (CHT) and RH + Tau (RHT)]. The HFD increased insulin secretion through mitochondrial metabolism in CH and RH. Tau prevented all those alterations in CHT only. The expression of the taurine transporter (Tau-T), as well as Tau content in pancreatic islets, was increased in CH but had no effect on RH. Protein malnutrition programs ß cells and impairs Tau-induced restoration of mitochondrial metabolism and biogenesis. This may be associated with modulation of the expression of Tau-T in pancreatic islets, which may be responsible for the absence of effect of Tau in protein-malnourished obese mice.-Branco, R. C. S., Camargo, R. L., Batista, T. M., Vettorazzi, J. F., Borck, P. C., dos Santos-Silva, J. C. R., Boschero, A. C., Zoppi, C. C., Carneiro, E. M. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Proteínas Alimentares/administração & dosagem , Insulina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Deficiência de Proteína/metabolismo , Taurina/farmacologia , Animais , Linhagem Celular , Suplementos Nutricionais , Regulação da Expressão Gênica/fisiologia , Ilhotas Pancreáticas , Masculino , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Taurina/administração & dosagem
11.
Amino Acids ; 50(6): 765-774, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29556780

RESUMO

The sulfur-containing amino acid, taurine (Tau), regulates glucose and lipid homeostasis under normal, pre- and diabetic conditions. Here, we aimed to verify whether Tau supplementation exerts its beneficial effects against obesity, hyperglycemia and alterations in islet functions, in leptin-deficient obese (ob/ob), over a long period of treatment. From weaning until 12 months of age, female ob/ob mice received, or not, 5% Tau in drinking water (obTau group). After this period, a reduction in hypertriglyceridemia and an improvement in glucose tolerance and insulin sensitivity were observed in obTau mice. In addition, the daily metabolic flexibility was restored in obTau mice. In the gastrocnemius muscle of obTau mice, the activation of AMP-activated protein kinase (AMPK) was increased, while total AMPK protein content was reduced. Finally, isolated islets from obTau mice expressed high amounts of pyruvate carboxylase (PC) protein and lower glucose-induced insulin secretion. Taking these evidences together Tau supplementation had long-term positive actions on glucose tolerance and insulin sensitivity, associated with a reduction in glucose-stimulated insulin secretion, in ob/ob mice. The improvement in insulin actions in obTau mice was due, at least in part, to increased activation of AMPK in skeletal muscle, while the increased content of the PC enzyme in pancreatic islets may help to preserve glucose responsiveness in obTau islets, possibly contributing to islet cell survive.


Assuntos
Glicemia/metabolismo , Homeostase/efeitos dos fármacos , Hipertrigliceridemia , Taurina/farmacologia , Animais , Teste de Tolerância a Glucose , Hipertrigliceridemia/sangue , Hipertrigliceridemia/tratamento farmacológico , Hipertrigliceridemia/patologia , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Obesos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
12.
Neural Plast ; 2017: 9652978, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28951790

RESUMO

The aim of this study was to investigate the effect of subdiaphragmatic vagotomy on insulin sensitivity, secretion, and degradation in metabolic programmed mice, induced by a low-protein diet early in life, followed by exposure to a high-fat diet in adulthood. Weaned 30-day-old C57Bl/6 mice were submitted to a low-protein diet (6% protein). After 4 weeks, the mice were distributed into three groups: LP group, which continued receiving a low-protein diet; LP + HF group, which started to receive a high-fat diet; and LP + HFvag group, which underwent vagotomy and also was kept at a high-fat diet. Glucose-stimulated insulin secretion (GSIS) in isolated islets, ipGTT, ipITT, in vivo insulin clearance, and liver expression of the insulin-degrading enzyme (IDE) was accessed. Vagotomy improved glucose tolerance and reduced insulin secretion but did not alter adiposity and insulin sensitivity in the LP + HFvag, compared with the LP + HF group. Improvement in glucose tolerance was accompanied by increased insulinemia, probably due to a diminished insulin clearance, as judged by the lower C-peptide : insulin ratio, during the ipGTT. Finally, vagotomy also reduced liver IDE expression in this group. In conclusion, when submitted to vagotomy, the metabolic programmed mice showed improved glucose tolerance, associated with an increase of plasma insulin concentration as a result of insulin clearance reduction, a phenomenon probably due to diminished liver IDE expression.


Assuntos
Resistência à Insulina/fisiologia , Insulina/metabolismo , Obesidade/cirurgia , Vagotomia/métodos , Animais , Dieta Hiperlipídica , Dieta com Restrição de Proteínas , Glucose/metabolismo , Insulisina/metabolismo , Fígado/metabolismo , Camundongos , Obesidade/metabolismo
13.
Biol Res ; 48: 3, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25654754

RESUMO

BACKGROUND: Gap junctions between ß-cells participate in the precise regulation of insulin secretion. Adherens junctions and their associated proteins are required for the formation, function and structural maintenance of gap junctions. Increases in the number of the gap junctions between ß-cells and enhanced glucose-stimulated insulin secretion are observed during pregnancy. In contrast, protein restriction produces structural and functional alterations that result in poor insulin secretion in response to glucose. We investigated whether protein restriction during pregnancy affects the expression of mRNA and proteins involved in gap and adherens junctions in pancreatic islets. An isoenergetic low-protein diet (6% protein) was fed to non-pregnant or pregnant rats from day 1-15 of pregnancy, and rats fed an isocaloric normal-protein diet (17% protein) were used as controls. RESULTS: The low-protein diet reduced the levels of connexin 36 and ß-catenin protein in pancreatic islets. In rats fed the control diet, pregnancy increased the levels of phospho-[Ser(279/282)]-connexin 43, and it decreased the levels of connexin 36, ß-catenin and beta-actin mRNA as well as the levels of connexin 36 and ß-catenin protein in islets. The low-protein diet during pregnancy did not alter these mRNA and protein levels, but avoided the increase of levels of phospho-[Ser(279/282)]-connexin 43 in islets. Insulin secretion in response to 8.3 mmol/L glucose was higher in pregnant rats than in non-pregnant rats, independently of the nutritional status. CONCLUSION: Short-term protein restriction during pregnancy prevented the Cx43 phosphorylation, but this event did not interfer in the insulin secretion.


Assuntos
Comunicação Celular/fisiologia , Diabetes Gestacional/dietoterapia , Dieta com Restrição de Proteínas , Junções Intercelulares/metabolismo , Ilhotas Pancreáticas/metabolismo , RNA Mensageiro/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , Análise de Variância , Animais , Glicemia/análise , Conexina 43/metabolismo , Conexinas/metabolismo , Diabetes Gestacional/prevenção & controle , Feminino , Junções Comunicantes/metabolismo , Glucose/administração & dosagem , Insulina/metabolismo , Secreção de Insulina , Gravidez , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , beta Catenina/metabolismo , Proteína delta-2 de Junções Comunicantes
14.
Can J Physiol Pharmacol ; 92(10): 867-78, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25272090

RESUMO

The disruption to glucose homeostasis upon glucocorticoid (GC) treatment in adult male rats has not been fully characterized in older rats or in females. Thus, we evaluated the age- and gender-related changes in glucose homeostasis in GC-treated rats. We injected male and female rats at 3 months and 12 months of age with either dexamethasone (1.0 mg/kg body mass, intraperitoneally) or saline, daily for 5 days. All of the GC-treated rats had decreased body mass and food intake, and adrenal hypotrophy. Increased glycemia was observed in all of the GC-treated groups and only the 3-month-old female rats were not glucose intolerant. Dexamethasone treatment resulted in hyperinsulinemia and hypertriacylglyceridemia in all of the GC-treated rats. The glucose-stimulated insulin secretion (GSIS) was higher in all of the dexamethasone-treated animals, but it was less pronounced in the older animals. The ß-cell mass was increased in the younger male rats treated with dexamethasone. We conclude that dexamethasone treatment induces glucose intolerance in both the 3- and 12-month-old male rats as well as hyperinsulinemia and augmented GSIS. Three-month-old female rats are protected from glucose intolerance caused by GC, whereas 12-month-old female rats developed the same complications that were present in 3- and 12-month-old male rats.


Assuntos
Anti-Inflamatórios/efeitos adversos , Glucocorticoides/efeitos adversos , Glucose/metabolismo , Imunossupressores/efeitos adversos , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/patologia , Fatores Etários , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Dexametasona/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Intolerância à Glucose/induzido quimicamente , Homeostase , Hiperinsulinismo/induzido quimicamente , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Fígado/metabolismo , Masculino , Ratos Wistar , Fatores Sexuais , Triglicerídeos/sangue
15.
Int J Food Sci Nutr ; 65(6): 745-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24655214

RESUMO

We assessed the biological value of an okara diet and its effects on the hormonal and metabolic profile of rats submitted to protein restriction during intra-uterine life and lactation and recovered after weaning. Male rats from mothers fed either 17% or 6% protein during pregnancy and lactation were maintained on 17% casein (CC, LC), 17% okara (CO, LO) or 6% casein (LL) diets over 60 d. The nutritional quality of the okara protein was similar to that of casein. The okara diet was effective in the nutritional recovery of rats in growing that were malnourished in early life. Furthermore, the okara diet reversed the hypercholesterolemia and the hepatic steatosis observed in the malnutrition and prevented glucose intolerance in an animal model prone to diabetes mellitus.


Assuntos
Dieta , Fígado Gorduroso/prevenção & controle , Intolerância à Glucose/prevenção & controle , Hipercolesterolemia/prevenção & controle , Fenômenos Fisiológicos da Nutrição Materna , Proteínas de Plantas/uso terapêutico , Polissacarídeos/uso terapêutico , Desnutrição Proteico-Calórica/metabolismo , Animais , Caseínas/farmacologia , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Dieta com Restrição de Proteínas , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Feminino , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Hipercolesterolemia/etiologia , Hipercolesterolemia/metabolismo , Masculino , Valor Nutritivo , Proteínas de Plantas/farmacologia , Polissacarídeos/farmacologia , Desnutrição Proteico-Calórica/complicações , Desnutrição Proteico-Calórica/dietoterapia , Ratos Wistar , Alimentos de Soja , Proteínas de Soja/farmacologia , Proteínas de Soja/uso terapêutico , Glycine max
16.
Sci Rep ; 14(1): 6136, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480757

RESUMO

Impaired insulin production and/or secretion by pancreatic beta cells can lead to high blood glucose levels and type 2 diabetes (T2D). Therefore, investigating new proteins involved in beta cell response to stress conditions could be useful in finding new targets for therapeutic approaches. KH-type splicing regulatory protein (KSRP) is a protein usually involved in gene expression due to its role in post-transcriptional regulation. Although there are studies describing the important role of KSRP in tissues closely related to glucose homeostasis, its effect on pancreatic beta cells has not been explored so far. Pancreatic islets from diet-induced obese mice (C57BL/6JUnib) were used to determine KSRP expression and we also performed in vitro experiments exposing INS-1E cells (pancreatic beta cell line) to different stressors (palmitate or cyclopiazonic acid-CPA) to induce cellular dysfunction. Here we show that KSRP expression is reduced in all the beta cell dysfunction models tested. In addition, when manipulated to knock down KSRP, beta cells exhibited increased death and impaired insulin secretion, whereas KSRP overexpression prevented cell death and increased insulin secretion. Taken together, our findings suggest that KSRP could be an important target to protect beta cells from impaired functioning and death.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Camundongos , Sobrevivência Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos C57BL
17.
Environ Sci Pollut Res Int ; 31(10): 15872-15884, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302837

RESUMO

Glyphosate-based herbicides (GBH) are the most widely used pesticides globally. Studies have indicated that they may increase the risk of various organic dysfunctions. Herein, we verified whether exposure to GBH during puberty increases the susceptibility of male and female mice to obesity when they are fed a high-fat diet (HFD) in adulthood. From the 4th-7th weeks of age, male and female C57Bl/6 mice received water (CTL group) or 50 mg GBH /kg body weight (BW; GBH group). From the 8th-21st weeks of age, the mice were fed a standard diet or a HFD. It was found that pubertal GBH exposure exacerbated BW gains and hyperphagia induced by HFD, but only in female GBH-HFD mice. These female mice also exhibited high accumulation of perigonadal and subcutaneous fat, as well as reduced lean body mass. Both male and female GBH-HFD displayed hypertrophic white adipocytes. However, only in females, pubertal GBH exposure aggravated HFD-induced fat accumulation in brown adipocytes. Furthermore, GBH increased plasma cortisol levels by 80% in GBH-HFD males, and 180% in GBH-HFD females. In conclusion, pubertal GBH exposure aggravated HFD-induced obesity, particularly in adult female mice. This study provides novel evidence that GBH misprograms lipid metabolism, accelerating the development of obesity when individuals are challenged by a second metabolic stressor, such as an obesogenic diet.


Assuntos
Dieta Hiperlipídica , Herbicidas , Camundongos , Masculino , Feminino , Animais , Dieta Hiperlipídica/efeitos adversos , Glifosato , Herbicidas/toxicidade , Obesidade/induzido quimicamente , Metabolismo dos Lipídeos
18.
Br J Nutr ; 109(2): 236-47, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-22475371

RESUMO

Malnutrition in early life impairs glucose-stimulated insulin secretion in adulthood. Conversely, pregnancy is associated with a significant increase in glucose-stimulated insulin secretion under conditions of normoglycaemia. A failure in ß-cell adaptive changes may contribute to the onset of diabetes. Thus, glucose homeostasis and ß-cell function were evaluated in control-fed pregnant (CP) and non-pregnant (CNP) or protein-restricted pregnant (LPP) and non-pregnant (LPNP) rats, from fetal to adult life, and in protein-restricted rats that were recovered after weaning (RP and RNP). The typical insulin resistance of pregnancy was not observed in the RP rats, nor did pregnancy increase the insulin content/islet in the LPP group. The glucose dose-response curves from pregnant rats were shifted to the left in relation to the non-pregnant rats, except in the recovered group. Glucose utilisation but not oxidation in islets from the RP and LPP groups was reduced at a concentration of 8.3 mm-glucose compared with islets from the CP group. Cyclic AMP content and the potentiation of glucose-stimulated insulin secretion by isobutylmethylxanthine at a concentration of 2.8 mm-glucose indicated increased adenylyl cyclase 3 activity but reduced protein kinase A-α activity in islets from the RP and LPP rats. Protein kinase C (PKC)-α but not phospholipase C (PLC)-ß1 expression was reduced in islets from the RP group. Phorbol-12-myristate 13-acetate produced a less potent stimulation of glucose-stimulated insulin secretion in the RP group. Thus, the alterations exhibited by islets from the LPP group appeared to be due to reduced islet mass and/or insulin biosynthesis. In the RP group the loss of the adaptive capacity apparently resulted from uncoupling between glucose metabolism and the amplifying signals of the secretory process, as well as a severe attenuation of the PLC/PKC pathway.


Assuntos
Diabetes Gestacional/etiologia , Dieta com Restrição de Proteínas/efeitos adversos , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Lactação , Desnutrição/fisiopatologia , Fenômenos Fisiológicos da Nutrição Materna , Animais , AMP Cíclico/metabolismo , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Diabetes Gestacional/prevenção & controle , Proteínas Alimentares/uso terapêutico , Feminino , Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Desnutrição/dietoterapia , Inibidores de Fosfodiesterase/farmacologia , Gravidez , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Desmame
19.
Mol Biol Rep ; 40(7): 4521-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23652999

RESUMO

Monosodium glutamate-obese rats are glucose intolerant and insulin resistant. Their pancreatic islets secrete more insulin at increasing glucose concentrations, despite the possible imbalance in the autonomic nervous system of these rats. Here, we investigate the involvement of the cholinergic/protein kinase (PK)-C and PKA pathways in MSG ß-cell function. Male newborn Wistar rats received a subcutaneous injection of MSG (4 g/kg body weight (BW)) or hyperosmotic saline solution during the first 5 days of life. At 90 days of life, plasma parameters, islet static insulin secretion and protein expression were analyzed. Monosodium glutamate rats presented lower body weight and decreased nasoanal length, but had higher body fat depots, glucose intolerance, hyperinsulinemia and hypertrigliceridemia. Their pancreatic islets secreted more insulin in the presence of increasing glucose concentrations with no modifications in the islet-protein content of the glucose-sensing proteins: the glucose transporter (GLUT)-2 and glycokinase. However, MSG islets presented a lower secretory capacity at 40 mM K(+) (P < 0.05). The MSG group also released less insulin in response to 100 µM carbachol, 10 µM forskolin and 1 mM 3-isobutyl-1-methyl-xantine (P < 0.05, P < 0.0001 and P < 0.01). These effects may be associated with a the decrease of 46 % in the acetylcholine muscarinic type 3 (M3) receptor, and a reduction of 64 % in PKCα and 36 % in PKAα protein expressions in MSG islets. Our data suggest that MSG islets, whilst showing a compensatory increase in glucose-induced insulin release, demonstrate decreased islet M3/PKC and adenylate cyclase/PKA activation, possibly predisposing these prediabetic rodents to the early development of ß-cell dysfunction.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ilhotas Pancreáticas/metabolismo , Obesidade/metabolismo , Proteína Quinase C/metabolismo , Receptor Muscarínico M3/metabolismo , Transdução de Sinais , Animais , Glicemia , Modelos Animais de Doenças , Quinases do Centro Germinativo , Glucose/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Insulina/metabolismo , Secreção de Insulina , Masculino , Obesidade/induzido quimicamente , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Glutamato de Sódio/administração & dosagem , Glutamato de Sódio/efeitos adversos
20.
Adv Exp Med Biol ; 776: 129-39, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23392878

RESUMO

Endoplasmic reticulum (ER) stress is a cellular response to increased intra-reticular protein accumulation or poor ER function. Chronic activation of this pathway may lead to beta cell death and metabolic syndrome (MS). Poor nutrition during perinatal period, especially protein malnutrition, is associated with increased risk for MS in later life. Here, we analyzed the effects of taurine (TAU) supplementation upon insulin secretion and ER stress marker expression in pancreatic islets and in the liver from mice fed a low-protein diet. Malnourished mice had lower body weight and plasma insulin. Their islets secreted less insulin in response to stimulatory concentrations of glucose. TAU supplementation increased insulin secretion in both normal protein and malnourished mice. Western blot analysis revealed lower expression of the ER stress markers CHOP and ATF4 and increased phosphorylation of the survival protein Akt in pancreatic islets of TAU-supplemented mice. The phosphorylation of the mitogenic protein extracellular signal-regulated kinase (ERK1/2) was increased after acute incubation with TAU. Finally, the ER stress markers p-PERK and BIP were increased in the liver of malnourished mice and TAU supplementation normalized these parameters.In conclusion, malnutrition leads to impaired islet function which is restored with TAU supplementation possibly by increasing survival signals and lowering ER stress proteins. Lower ER stress markers in the liver may also contribute to the improvement of insulin action on peripheral organs.


Assuntos
Biomarcadores/metabolismo , Suplementos Nutricionais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Insulina/metabolismo , Desnutrição Proteico-Calórica/tratamento farmacológico , Desnutrição Proteico-Calórica/metabolismo , Taurina/farmacologia , Animais , Área Sob a Curva , Crescimento e Desenvolvimento/efeitos dos fármacos , Insulina/sangue , Secreção de Insulina , Masculino , Camundongos , Desnutrição Proteico-Calórica/sangue , Taurina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA