RESUMO
Organs-on-chips (OoCs) hold promise to engineer progressively more human-relevant in vitro models for pharmaceutical purposes. Recent developments have delivered increasingly sophisticated designs, yet OoCs still lack in reproducing the inner tissue physiology required to fully resemble the native human body. This review emphasizes the need to include microarchitectural and microstructural features, and discusses promising avenues to incorporate well-defined microarchitectures down to the single-cell level. We highlight how their integration will significantly contribute to the advancement of the field towards highly organized structural and hierarchical tissues-on-chip. We discuss the combination of state-of-the-art micropatterning technologies to achieve OoCs resembling human-intrinsic complexity. It is anticipated that these innovations will yield significant advances in realization of the next generation of OoC models.