Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 97(8): 2291-2302, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37296313

RESUMO

In a joint effort involving scientists from academia, industry and regulatory agencies, ECETOC's activities in Omics have led to conceptual proposals for: (1) A framework that assures data quality for reporting and inclusion of Omics data in regulatory assessments; and (2) an approach to robustly quantify these data, prior to interpretation for regulatory use. In continuation of these activities this workshop explored and identified areas of need to facilitate robust interpretation of such data in the context of deriving points of departure (POD) for risk assessment and determining an adverse change from normal variation. ECETOC was amongst the first to systematically explore the application of Omics methods, now incorporated into the group of methods known as New Approach Methodologies (NAMs), to regulatory toxicology. This support has been in the form of both projects (primarily with CEFIC/LRI) and workshops. Outputs have led to projects included in the workplan of the Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) group of the Organisation for Economic Co-operation and Development (OECD) and to the drafting of OECD Guidance Documents for Omics data reporting, with potentially more to follow on data transformation and interpretation. The current workshop was the last in a series of technical methods development workshops, with a sub-focus on the derivation of a POD from Omics data. Workshop presentations demonstrated that Omics data developed within robust frameworks for both scientific data generation and analysis can be used to derive a POD. The issue of noise in the data was discussed as an important consideration for identifying robust Omics changes and deriving a POD. Such variability or "noise" can comprise technical or biological variation within a dataset and should clearly be distinguished from homeostatic responses. Adverse outcome pathways (AOPs) were considered a useful framework on which to assemble Omics methods, and a number of case examples were presented in illustration of this point. What is apparent is that high dimension data will always be subject to varying processing pipelines and hence interpretation, depending on the context they are used in. Yet, they can provide valuable input for regulatory toxicology, with the pre-condition being robust methods for the collection and processing of data together with a comprehensive description how the data were interpreted, and conclusions reached.


Assuntos
Rotas de Resultados Adversos , Genômica , Genômica/métodos , Medição de Risco , Toxicogenética , Projetos de Pesquisa
2.
Metabolomics ; 18(1): 11, 2022 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35000038

RESUMO

INTRODUCTION: High-throughput screening (HTS) is emerging as an approach to support decision-making in chemical safety assessments. In parallel, in vitro metabolomics is a promising approach that can help accelerate the transition from animal models to high-throughput cell-based models in toxicity testing. OBJECTIVE: In this study we establish and evaluate a high-throughput metabolomics workflow that is compatible with a 96-well HTS platform employing 50,000 hepatocytes of HepaRG per well. METHODS: Low biomass cell samples were extracted for metabolomics analyses using a newly established semi-automated protocol, and the intracellular metabolites were analysed using a high-resolution spectral-stitching nanoelectrospray direct infusion mass spectrometry (nESI-DIMS) method that was modified for low sample biomass. RESULTS: The method was assessed with respect to sensitivity and repeatability of the entire workflow from cell culturing and sampling to measurement of the metabolic phenotype, demonstrating sufficient sensitivity (> 3000 features in hepatocyte extracts) and intra- and inter-plate repeatability for polar nESI-DIMS assays (median relative standard deviation < 30%). The assays were employed for a proof-of-principle toxicological study with a model toxicant, cadmium chloride, revealing changes in the metabolome across five sampling times in the 48-h exposure period. To allow the option for lipidomics analyses, the solvent system was extended by establishing separate extraction methods for polar metabolites and lipids. CONCLUSIONS: Experimental, analytical and informatics workflows reported here met pre-defined criteria in terms of sensitivity, repeatability and ability to detect metabolome changes induced by a toxicant and are ready for application in metabolomics-driven toxicity testing to complement HTS assays.


Assuntos
Ensaios de Triagem em Larga Escala , Metabolômica , Animais , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Manejo de Espécimes
3.
Arch Toxicol ; 95(1): 207-228, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33078273

RESUMO

Due to regulatory bans and voluntary substitutions, halogenated polybrominated diphenyl ether (PBDE) flame retardants (FR) are increasingly substituted by mainly organophosphorus FR (OPFR). Leveraging a 3D rat primary neural organotypic in vitro model (rat brainsphere), we compare developmental neurotoxic effects of BDE-47-the most abundant PBDE congener-with four OPFR (isopropylated phenyl phosphate-IPP, triphenyl phosphate-TPHP, isodecyl diphenyl phosphate-IDDP, and tricresyl phosphate (also known as trimethyl phenyl phosphate)-TMPP). Employing mass spectroscopy-based metabolomics and transcriptomics, we observe at similar human-relevant non-cytotoxic concentrations (0.1-5 µM) stronger developmental neurotoxic effects by OPFR. This includes toxicity to neurons in the low µM range; all FR decrease the neurotransmitters glutamate and GABA (except BDE-47 and TPHP). Furthermore, n-acetyl aspartate (NAA), considered a neurologic diagnostic molecule, was decreased by all OPFR. At similar concentrations, the FR currently in use decreased plasma membrane dopamine active transporter expression, while BDE-47 did not. Several findings suggest astrogliosis induced by the OPFR, but not BDE-47. At the 5 µM concentrations, the OPFR more than BDE-47 interfered with myelination. An increase of cytokine gene and receptor expressions suggests that exposure to OPFR may induce an inflammatory response. Pathway/category overrepresentation shows disruption in 1) transmission of action potentials, cell-cell signaling, synaptic transmission, receptor signaling, (2) immune response, inflammation, defense response, (3) cell cycle and (4) lipids metabolism and transportation. Taken together, this appears to be a case of regretful substitution with substances not less developmentally neurotoxic in a primary rat 3D model.


Assuntos
Encéfalo/efeitos dos fármacos , Retardadores de Chama/toxicidade , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Organofosfatos/toxicidade , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Idade Gestacional , Éteres Difenil Halogenados/toxicidade , Metaboloma/efeitos dos fármacos , Metabolômica , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Gravidez , Ratos Sprague-Dawley , Esferoides Celulares , Transcriptoma/efeitos dos fármacos , Tritolil Fosfatos/toxicidade
4.
Regul Toxicol Pharmacol ; 125: 105020, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333066

RESUMO

Omics methodologies are widely used in toxicological research to understand modes and mechanisms of toxicity. Increasingly, these methodologies are being applied to questions of regulatory interest such as molecular point-of-departure derivation and chemical grouping/read-across. Despite its value, widespread regulatory acceptance of omics data has not yet occurred. Barriers to the routine application of omics data in regulatory decision making have been: 1) lack of transparency for data processing methods used to convert raw data into an interpretable list of observations; and 2) lack of standardization in reporting to ensure that omics data, associated metadata and the methodologies used to generate results are available for review by stakeholders, including regulators. Thus, in 2017, the Organisation for Economic Co-operation and Development (OECD) Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) launched a project to develop guidance for the reporting of omics data aimed at fostering further regulatory use. Here, we report on the ongoing development of the first formal reporting framework describing the processing and analysis of both transcriptomic and metabolomic data for regulatory toxicology. We introduce the modular structure, content, harmonization and strategy for trialling this reporting framework prior to its publication by the OECD.


Assuntos
Metabolômica/normas , Organização para a Cooperação e Desenvolvimento Econômico/normas , Toxicogenética/normas , Toxicologia/normas , Transcriptoma/fisiologia , Documentação/normas , Humanos
5.
Arch Toxicol ; 91(1): 217-230, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27039105

RESUMO

In the context of the Human Toxome project, mass spectroscopy-based metabolomics characterization of estrogen-stimulated MCF-7 cells was studied in order to support the untargeted deduction of pathways of toxicity. A targeted and untargeted approach using overrepresentation analysis (ORA), quantitative enrichment analysis (QEA) and pathway analysis (PA) and a metabolite network approach were compared. Any untargeted approach necessarily has some noise in the data owing to artifacts, outliers and misidentified metabolites. Depending on the chemical analytical choices (sample extraction, chromatography, instrument and settings, etc.), only a partial representation of all metabolites will be achieved, biased by both the analytical methods and the database used to identify the metabolites. Here, we show on the one hand that using a data analysis approach based exclusively on pathway annotations has the potential to miss much that is of interest and, in the case of misidentified metabolites, can produce perturbed pathways that are statistically significant yet uninformative for the biological sample at hand. On the other hand, a targeted approach, by narrowing its focus and minimizing (but not eliminating) misidentifications, renders the likelihood of a spurious pathway much smaller, but the limited number of metabolites also makes statistical significance harder to achieve. To avoid an analysis dependent on pathways, we built a de novo network using all metabolites that were different at 24 h with and without estrogen with a p value <0.01 (53) in the STITCH database, which links metabolites based on known reactions in the main metabolic network pathways but also based on experimental evidence and text mining. The resulting network contained a "connected component" of 43 metabolites and helped identify non-endogenous metabolites as well as pathways not visible by annotation-based approaches. Moreover, the most highly connected metabolites (energy metabolites such as pyruvate and alpha-ketoglutarate, as well as amino acids) showed only a modest change between proliferation with and without estrogen. Here, we demonstrate that estrogen has subtle but potentially phenotypically important alterations in the acyl-carnitine fatty acids, acetyl-putrescine and succinoadenosine, in addition to likely subtle changes in key energy metabolites that, however, could not be verified consistently given the technical limitations of this approach. Finally, we show that a network-based approach combined with text mining identifies pathways that would otherwise neither be considered statistically significant on their own nor be identified via ORA, QEA, or PA.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Modelos Biológicos , Metabolismo Secundário/efeitos dos fármacos , Toxicologia/métodos , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Mineração de Dados , Bases de Dados Factuais , Disruptores Endócrinos/farmacologia , Humanos , Células MCF-7 , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray
6.
Toxicol In Vitro ; 95: 105761, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38081393

RESUMO

There is increasing interest to employ in vitro transcriptomics experiments in toxicological testing, for example to determine a point-of-departure (PoD) for chemical safety assessment. However current practices to derive PoD tend to utilise a single exposure time despite the importance of exposure time on the manifestation of toxicity caused by a chemical. Therefore it is important to investigate both concentration and exposure time to determine how these factors affect biological responses, and as a consequence, the derivation of PoDs. In this study, metabolically competent HepaRG cells were exposed to five known toxicants over a range of concentrations and time points for subsequent gene expression analysis, using a targeted RNA expression assay (TempO-Seq). A non-parametric factor-modelling approach was used to model the collective response of all significant genes, which exploited the interdependence of differentially expressed gene responses. This in turn allowed the determination of an isobenchmark response (isoBMR) curve for each chemical in a reproducible manner. For 2 of the 5 chemicals tested, the PoD was observed to vary by 0.5-1 log-order within the 48-h timeframe of the experiment. The approach and findings presented here clearly demonstrate the need to take both concentration and exposure time into account when designing in vitro toxicogenomics experiments to determine PoD. Doing so also provides a means to use concentration-time-response modelling as a basis to extrapolate a PoD from shorter to longer exposure durations, and to identify chemicals of concern that can cause cumulative effects over time.


Assuntos
Benchmarking , Perfilação da Expressão Gênica , Medição de Risco
7.
J Appl Toxicol ; 33(12): 1365-83, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23722930

RESUMO

Metabolomics use in toxicology is rapidly increasing, particularly owing to advances in mass spectroscopy, which is widely used in the life sciences for phenotyping disease states. Toxicology has the advantage of having the disease agent, the toxicant, available for experimental induction of metabolomics changes monitored over time and dose. This review summarizes the different technologies employed and gives examples of their use in various areas of toxicology. A prominent use of metabolomics is the identification of signatures of toxicity - patterns of metabolite changes predictive of a hazard manifestation. Increasingly, such signatures indicative of a certain hazard manifestation are identified, suggesting that certain modes of action result in specific derangements of the metabolism. This might enable the deduction of underlying pathways of toxicity, which, in their entirety, form the Human Toxome, a key concept for implementing the vision of Toxicity Testing for the 21st century. This review summarizes the current state of metabolomics technologies and principles, their uses in toxicology and gives a thorough overview on metabolomics bioinformatics, pathway identification and quality assurance. In addition, this review lays out the prospects for further metabolomics application also in a regulatory context.


Assuntos
Metabolômica/métodos , Toxicologia/métodos , Animais , Interpretação Estatística de Dados , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica/estatística & dados numéricos , Software , Toxicologia/estatística & dados numéricos
8.
Biosens Bioelectron ; 22(9-10): 2230-6, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17156996

RESUMO

We present herein a photo-immobilization technique for the localized and specific conjugation of biochip platforms with different proteinaceous bioreceptors, such as antigen or antibodies. This methodology based on a photoactivable electrogenerated polymer film, pyrrole-benzophenone, allows the covalent immobilization of biomolecules through light mediation. The surface-conductive glass platform electropolymerized with poly(pyrrole-benzophenone) thin film may then be used to affinity-coat the chip with molecular recognition probes. This glass chip electroconductive surface modification is done by the deposition of a thin layer of indium tin oxide (ITO). Thereafter, pyrrole-benzophenone monomers are electropolymerized onto the conductive metal oxide surface and then exposed to an antigen Staphylococcal Enterotoxin B (SEB)) solution and illuminated with UV light (wavelength approximately 345 nm) through a mask. As a result of the photochemical reaction, a pattern thin layer of the antigen was covalently bound to the benzophenone-modified surface. Then the sample to be analyzed, along with its specific target antibody (anti-SEB antibodies), is introduced onto the glass surface and left to react with the previously photo-immobilized antigen. When the immuno-reaction is completed, the specifically attached immunoglobulin analytes are detected by using secondary antibodies conjugated with Fluorescein isothiocyanate (FITC). The fluorescence signal emanating from the biochip surface is then quantified by two methods, using a filtered intensified charge-coupled device (CCD) camera and a grating spectrometer.


Assuntos
Anticorpos/análise , Galvanoplastia , Vidro , Luz , Microscopia de Força Atômica , Compostos de Estanho , Benzofenonas , Enterotoxinas/imunologia
9.
ALTEX ; 33(2): 167-82, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26863516

RESUMO

Read-across, i.e. filling toxicological data gaps by relating to similar chemicals, for which test data are available, is usually done based on chemical similarity. Besides structure and physico-chemical properties, however, biological similarity based on biological data adds extra strength to this process. In the context of developing Good Read-Across Practice guidance, a number of case studies were evaluated to demonstrate the use of biological data to enrich read-across. In the simplest case, chemically similar substances also show similar test results in relevant in vitro assays. This is a well-established method for the read-across of e.g. genotoxicity assays. Larger datasets of biological and toxicological properties of hundreds and thousands of substances become increasingly available enabling big data approaches in read-across studies. Several case studies using various big data sources are described in this paper. An example is given for the US EPA's ToxCast dataset allowing read-across for high quality uterotrophic assays for estrogenic endocrine disruption. Similarly, an example for REACH registration data enhancing read-across for acute toxicity studies is given. A different approach is taken using omics data to establish biological similarity: Examples are given for stem cell models in vitro and short-term repeated dose studies in rats in vivo to support read-across and category formation. These preliminary biological data-driven read-across studies highlight the road to the new generation of read-across approaches that can be applied in chemical safety assessment.


Assuntos
Bioensaio/métodos , Segurança Química/métodos , Bases de Dados Factuais , Substâncias Perigosas/química , Substâncias Perigosas/toxicidade , Alternativas aos Testes com Animais , Animais , Mineração de Dados , Ensaios de Triagem em Larga Escala , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
10.
Sci Rep ; 6: 28994, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27456714

RESUMO

Common recommendations for cell line authentication, annotation and quality control fall short addressing genetic heterogeneity. Within the Human Toxome Project, we demonstrate that there can be marked cellular and phenotypic heterogeneity in a single batch of the human breast adenocarcinoma cell line MCF-7 obtained directly from a cell bank that are invisible with the usual cell authentication by short tandem repeat (STR) markers. STR profiling just fulfills the purpose of authentication testing, which is to detect significant cross-contamination and cell line misidentification. Heterogeneity needs to be examined using additional methods. This heterogeneity can have serious consequences for reproducibility of experiments as shown by morphology, estrogenic growth dose-response, whole genome gene expression and untargeted mass-spectroscopy metabolomics for MCF-7 cells. Using Comparative Genomic Hybridization (CGH), differences were traced back to genetic heterogeneity already in the cells from the original frozen vials from the same ATCC lot, however, STR markers did not differ from ATCC reference for any sample. These findings underscore the need for additional quality assurance in Good Cell Culture Practice and cell characterization, especially using other methods such as CGH to reveal possible genomic heterogeneity and genetic drifts within cell lines.


Assuntos
Variação Genética/genética , Linhagem Celular Tumoral , Hibridização Genômica Comparativa/métodos , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos/genética , Humanos , Células MCF-7 , Repetições de Microssatélites/genética , Reprodutibilidade dos Testes
11.
ALTEX ; 33(2): 149-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26863606

RESUMO

Grouping of substances and utilizing read-across of data within those groups represents an important data gap filling technique for chemical safety assessments. Categories/analogue groups are typically developed based on structural similarity and, increasingly often, also on mechanistic (biological) similarity. While read-across can play a key role in complying with legislations such as the European REACH regulation, the lack of consensus regarding the extent and type of evidence necessary to support it often hampers its successful application and acceptance by regulatory authorities. Despite a potentially broad user community, expertise is still concentrated across a handful of organizations and individuals. In order to facilitate the effective use of read-across, this document aims to summarize the state-of-the-art, summarizes insights learned from reviewing ECHA published decisions as far as the relative successes/pitfalls surrounding read-across under REACH and compile the relevant activities and guidance documents. Special emphasis is given to the available existing tools and approaches, an analysis of ECHA's published final decisions associated with all levels of compliance checks and testing proposals, the consideration and expression of uncertainty, the use of biological support data and the impact of the ECHA Read-Across Assessment Framework (RAAF) published in 2015.


Assuntos
Segurança Química/métodos , Substâncias Perigosas/toxicidade , Animais , Bases de Dados Factuais , Humanos , Medição de Risco/métodos , Gestão da Segurança/métodos , Toxicologia/métodos , Incerteza
12.
Front Pharmacol ; 6: 322, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26924983

RESUMO

The Human Toxome Project is part of a long-term vision to modernize toxicity testing for the 21st century. In the initial phase of the project, a consortium of six academic, commercial, and government organizations has partnered to map pathways of toxicity, using endocrine disruption as a model hazard. Experimental data is generated at multiple sites, and analyzed using a range of computational tools. While effectively gathering, managing, and analyzing the data for high-content experiments is a challenge in its own right, doing so for a growing number of -omics technologies, with larger data sets, across multiple institutions complicates the process. Interestingly, one of the most difficult, ongoing challenges has been the computational collaboration between the geographically separate institutions. Existing solutions cannot handle the growing heterogeneous data, provide a computational environment for consistent analysis, accommodate different workflows, and adapt to the constantly evolving methods and goals of a research project. To meet the needs of the project, we have created and managed The Human Toxome Collaboratorium, a shared computational environment hosted on third-party cloud services. The Collaboratorium provides a familiar virtual desktop, with a mix of commercial, open-source, and custom-built applications. It shares some of the challenges of traditional information technology, but with unique and unexpected constraints that emerge from the cloud. Here we describe the problems we faced, the current architecture of the solution, an example of its use, the major lessons we learned, and the future potential of the concept. In particular, the Collaboratorium represents a novel distribution method that could increase the reproducibility and reusability of results from similar large, multi-omic studies.

13.
ALTEX ; 32(4): 319-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26536290

RESUMO

Metabolomics promises a holistic phenotypic characterization of biological responses to toxicants. This technology is based on advanced chemical analytical tools with reasonable throughput, including mass-spectroscopy and NMR. Quality assurance, however - from experimental design, sample preparation, metabolite identification, to bioinformatics data-mining - is urgently needed to assure both quality of metabolomics data and reproducibility of biological models. In contrast to microarray-based transcriptomics, where consensus on quality assurance and reporting standards has been fostered over the last two decades, quality assurance of metabolomics is only now emerging. Regulatory use in safety sciences, and even proper scientific use of these technologies, demand quality assurance. In an effort to promote this discussion, an expert workshop discussed the quality assurance needs of metabolomics. The goals for this workshop were 1) to consider the challenges associated with metabolomics as an emerging science, with an emphasis on its application in toxicology and 2) to identify the key issues to be addressed in order to establish and implement quality assurance procedures in metabolomics-based toxicology. Consensus has still to be achieved regarding best practices to make sure sound, useful, and relevant information is derived from these new tools.


Assuntos
Metabolômica/normas , Controle de Qualidade , Alternativas aos Testes com Animais/normas , Animais , Metabolômica/métodos , Modelos Biológicos
14.
ALTEX ; 32(2): 112-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25742299

RESUMO

The Human Toxome Project, funded as an NIH Transformative Research grant 2011-2016, is focused on developing the concepts and the means for deducing, validating and sharing molecular pathways of toxicity (PoT). Using the test case of estrogenic endocrine disruption, the responses of MCF-7 human breast cancer cells are being phenotyped by transcriptomics and mass-spectroscopy-based metabolomics. The bioinformatics tools for PoT deduction represent a core deliverable. A number of challenges for quality and standardization of cell systems, omics technologies and bioinformatics are being addressed. In parallel, concepts for annotation, validation and sharing of PoT information, as well as their link to adverse outcomes, are being developed. A reasonably comprehensive public database of PoT, the Human Toxome Knowledge-base, could become a point of reference for toxicological research and regulatory test strategies.


Assuntos
Toxicologia/métodos , Alternativas aos Testes com Animais , Animais , Bases de Dados Factuais , Disruptores Endócrinos , Humanos , Metabolômica , Camundongos , Testes de Toxicidade/métodos , Transcriptoma
15.
Basic Clin Pharmacol Toxicol ; 115(1): 24-31, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24443875

RESUMO

Toxicity testing typically involves studying adverse health outcomes in animals subjected to high doses of toxicants with subsequent extrapolation to expected human responses at lower doses. The low-throughput of current toxicity testing approaches (which are largely the same for industrial chemicals, pesticides and drugs) has led to a backlog of more than 80,000 chemicals to which human beings are potentially exposed whose potential toxicity remains largely unknown. Employing new testing strategies that employ the use of predictive, high-throughput cell-based assays (of human origin) to evaluate perturbations in key pathways, referred as pathways of toxicity, and to conduct targeted testing against those pathways, we can begin to greatly accelerate our ability to test the vast 'storehouses' of chemical compounds using a rational, risk-based approach to chemical prioritization and provide test results that are more predictive of human toxicity than current methods. The NIH Transformative Research Grant project Mapping the Human Toxome by Systems Toxicology aims at developing the tools for pathway mapping, annotation and validation as well as the respective knowledge base to share this information.


Assuntos
Testes de Toxicidade/métodos , Animais , Disruptores Endócrinos/toxicidade , Perfilação da Expressão Gênica/métodos , Humanos , Metabolômica/métodos , Modelos Animais , Reprodutibilidade dos Testes , Software
16.
ALTEX ; 31(1): 53-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24127042

RESUMO

Despite wide-spread consensus on the need to transform toxicology and risk assessment in order to keep pace with technological and computational changes that have revolutionized the life sciences, there remains much work to be done to achieve the vision of toxicology based on a mechanistic foundation. To this end, a workshop was organized to explore one key aspect of this transformation - the development of Pathways of Toxicity as a key tool for hazard identification based on systems biology. Several issues were discussed in depth in the workshop: The first was the challenge of formally defining the concept of a Pathway of Toxicity (PoT), as distinct from, but complementary to, other toxicological pathway concepts such as mode of action (MoA). The workshop came up with a preliminary definition of PoT as "A molecular definition of cellular processes shown to mediate adverse outcomes of toxicants". It is further recognized that normal physiological pathways exist that maintain homeostasis and these, sufficiently perturbed, can become PoT. Second, the workshop sought to define the adequate public and commercial resources for PoT information, including data, visualization, analyses, tools, and use-cases, as well as the kinds of efforts that will be necessary to enable the creation of such a resource. Third, the workshop explored ways in which systems biology approaches could inform pathway annotation, and which resources are needed and available that can provide relevant PoT information to the diverse user communities.


Assuntos
Alternativas aos Testes com Animais , Substâncias Perigosas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Bases de Dados Factuais , Substâncias Perigosas/metabolismo , Humanos , Valor Preditivo dos Testes , Medição de Risco , Transdução de Sinais/fisiologia
17.
Toxicol In Vitro ; 27(2): 760-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23261643

RESUMO

When in vitro test systems are evaluated for assessment of the toxicity of chemical compounds, particular efforts are made to mimic the in vivo reality as close as possible. Cellular models with appropriate metabolic competence, i.e. with the potency to biotransform chemical compounds, are considered crucial since some metabolites have a different toxicity than their parent compounds. In this study a cell based in vitro test system is proposed to investigate the basal cytotoxicity of several reference chemicals. Both metabolic competent HepaRG cells and cells with no or low hepatic enzyme activity (undifferentiated HepaRG and proliferating HepG2) were used. The classic Neutral Red Uptake (NRU) assay proved to be robust and reliable to be applied as viability assay. The test was performed on a robotic platform, which enabled fully automated and simultaneous screening of the compounds. The outcome of these tests grouped the tested compounds in three categories following their detoxification effect (benzo(a)pyrene, valproic acid), their bio-activation effect (aflatoxin B1) and their specific effect on inhibition of cell proliferation (cycloheximide, sodium lauryl sulphate, atropine sulphate monohydrate, acetylsalicylic acid).


Assuntos
Vermelho Neutro/metabolismo , Testes de Toxicidade/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Células Hep G2 , Humanos
18.
Food Chem Toxicol ; 50(6): 2084-96, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22465836

RESUMO

Application of High Throughput Screening (HTS) to the regulatory safety assessment of chemicals is still in its infancy but shows great promise in terms of facilitating better understanding of toxicological modes-of-action, reducing the reliance on animal testing, and allowing more data-poor chemicals to be assessed at a reasonable cost. To promote the uptake and acceptance of HTS approaches, we describe in a stepwise manner how a well known cytotoxicity assay can be automated to increase throughput while maintaining reliability. Results generated with selected reference chemicals compared very favourably with data obtained from a previous international validation study concerning the prediction of acute systemic toxicity in rodents. The automated assay was then included in a formal ECVAM validation study to determine if the assay could be used for binary classification of chemicals with respect to their acute oral toxicity, using a threshold equivalent to a dose of 2000 mg/kg b.w. in a rodent bioassay (LD50). This involved the blind-testing of 56 reference chemicals on the HTS platform to produce concentration-response and IC50 data. Finally, the assay was adapted to a format more suited to higher throughput testing without compromising the quality of the data obtained.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Testes de Toxicidade Aguda/instrumentação , Células 3T3 , Alternativas aos Testes com Animais , Animais , Automação , Técnicas de Cultura de Células , Interpretação Estatística de Dados , Determinação de Ponto Final , Ensaios de Triagem em Larga Escala , Dose Letal Mediana , Camundongos , Software , Testes de Toxicidade Aguda/métodos
20.
Appl Opt ; 47(9): 1193-9, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18709064

RESUMO

Time-domain fluorescence lifetime imaging (FLIM) and hyper-spectral imaging (HSI) are two advanced microscopy techniques widely used in biological studies. Typically both FLIM and HSI are performed with either a whole-field or raster-scanning approach, which often prove to be technically complex and expensive, requiring the user to accept a compromise among precision, speed, and spatial resolution. We propose the use of a digital micromirror device (DMD) as a spatial illuminator for time-domain FLIM and HSI with a laser diode excitation source. The rather unique features of the DMD allow both random and parallel access to regions of interest (ROIs) on the sample, in a very rapid and repeatable fashion. As a consequence both spectral and lifetime images can be acquired with a precision normally associated with single-point systems but with a high degree of flexibility in their spatial construction. In addition, the DMD system offers a very efficient way of implementing a global analysis approach for FLIM, where average fluorescence decay parameters are first acquired for a ROI and then used as initial estimates in determining their spatial distribution within the ROI. Experimental results obtained on phantoms employing fluorescent dyes clearly show how the DMD method supports both spectral and temporal separation for target identification in HSI and FLIM, respectively.


Assuntos
Óptica e Fotônica , Espectrometria de Fluorescência/instrumentação , Algoritmos , Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/métodos , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Lasers , Análise dos Mínimos Quadrados , Imagens de Fantasmas , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Espectrometria de Fluorescência/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA