Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008056

RESUMO

Tomato mottle virus (ToMoV) is a single-stranded DNA (ssDNA) begomovirus transmitted to solanaceous crops by the whitefly species complex (Bemisia tabaci), causing stunted growth, leaf mottling, and reduced yield. Using a genetic repertoire of seven genes, ToMoV pathogenesis includes the manipulation of multiple plant biological processes to circumvent antiviral defenses. To further understand the effects of whitefly feeding and whitefly-transmitted ToMoV infection on tomato plants (Solanum lycopersicum 'Florida Lanai'), we generated comprehensive protein profiles of leaves subjected to feeding by either viruliferous whiteflies harboring ToMoV, or non-viruliferous whiteflies, or a no-feeding control. The effects of whitefly feeding and ToMoV infection were measured both locally and systemically by sampling either a mature leaf directly from the site of clip-cage confined whitefly feeding, or from a newly formed leaf 10 days post feeding (dpf). At 3 dpf, tomato's response to ToMoV included proteins associated with translation initiation and elongation as well as plasmodesmata dynamics. In contrast, systemic impacts of ToMoV on younger leaves 10 dpf were more pronounced and included a virus-specific change in plant proteins associated with mRNA maturation and export, RNA-dependent DNA methylation, and other antiviral plant processes. Our analysis supports previous findings and provides novel insight into tomato's local and systemic response to whitefly feeding and ToMoV infection.


Assuntos
Begomovirus/patogenicidade , Doenças das Plantas/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Animais , Begomovirus/genética , Hemípteros/genética , Hemípteros/virologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/virologia , Proteínas de Plantas/classificação , Proteômica
2.
Plant Dis ; 103(9): 2367-2373, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31318645

RESUMO

Sugarcane yellow leaf virus (SCYLV), the causal agent of yellow leaf, is widespread in Florida. Two field trials were set up, one on organic soil and one on mineral soil, to investigate the rate and timing of sugarcane infection by SCYLV under field conditions and the effect of the virus on yield. Each trial consisted of plots planted with healthy or SCYLV-infected seed cane of two commercial cultivars. Virus prevalence varied from 83 to 100% in plots planted with infected seed cane regardless of cultivar, location, and crop season. On organic soil, plants of virus-free plots became progressively infected in plant cane and first ratoon crops. On mineral soil, healthy sugarcane became initially infected in the first ratoon crop. After three crop seasons, the highest SCYLV prevalence rates were 33 and 7% on organic and mineral soils, respectively. No significant negative effect of SCYLV on yield was found in plant cane crop regardless of cultivar and soil type. However, yield reductions in ratoon crops varied from nonsignificant to 27% depending on cultivar and soil type. Low virus prevalence observed after three crop seasons suggested that planting virus-free seed cane should limit the impact of SCYLV on sugarcane production in Florida.


Assuntos
Luteoviridae , Saccharum , Solo , Florida , Luteoviridae/fisiologia , Minerais/química , Doenças das Plantas/virologia , Saccharum/virologia , Solo/química
3.
Virol J ; 14(1): 146, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754134

RESUMO

BACKGROUND: In Africa and Asia, sugarcane is the host of at least seven different virus species in the genus Mastrevirus of the family Geminiviridae. However, with the exception of Sugarcane white streak virus in Barbados, no other sugarcane-infecting mastrevirus has been reported in the New World. Conservation and exchange of sugarcane germplasm using stalk cuttings facilitates the spread of sugarcane-infecting viruses. METHODS: A virion-associated nucleic acids (VANA)-based metagenomics approach was used to detect mastrevirus sequences in 717 sugarcane samples from Florida (USA), Guadeloupe (French West Indies), and Réunion (Mascarene Islands). Contig assembly was performed using CAP3 and sequence searches using BLASTn and BLASTx. Mastrevirus full genomes were enriched from total DNA by rolling circle amplification, cloned and sequenced. Nucleotide and amino acid sequence identities were determined using SDT v1.2. Phylogenetic analyses were conducted using MEGA6 and PHYML3. RESULTS: We identified a new sugarcane-infecting mastrevirus in six plants sampled from germplasm collections in Florida and Guadeloupe. Full genome sequences were determined and analyzed for three virus isolates from Florida, and three from Guadeloupe. These six genomes share >88% genome-wide pairwise identity with one another and between 89 and 97% identity with a recently identified mastrevirus (KR150789) from a sugarcane plant sampled in China. Sequences similar to these were also identified in sugarcane plants in Réunion. CONCLUSIONS: As these virus isolates share <64% genome-wide identity with all other known mastreviruses, we propose classifying them within a new mastrevirus species named Sugarcane striate virus. This is the first report of sugarcane striate virus (SCStV) in the Western Hemisphere, a virus that most likely originated in Asia. The distribution, vector, and impact of SCStV on sugarcane production remains to be determined.


Assuntos
Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Saccharum/virologia , Clonagem Molecular , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , DNA Viral/isolamento & purificação , Florida , Guadalupe , Filogenia , Reunião , Análise de Sequência de DNA , Homologia de Sequência , Sequenciamento Completo do Genoma
4.
PLoS One ; 15(3): e0230066, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32142559

RESUMO

Sugarcane yellow leaf virus (SCYLV), the causal agent of yellow leaf disease, naturally infects at least three plant species in Florida: sugarcane (Saccharum spp.), the weed Columbus grass (Sorghum almum) and cultivated sorghum (S. bicolor). All three hosts are also colonized by the sugarcane aphid (Melanaphis sacchari), the main vector of SCYLV worldwide. To understand the high incidence of SCYLV observed in sugarcane commercial fields and in germplasm collections, we investigated the transmission efficiency of SCYLV from sugarcane and Columbus grass to sugarcane using the sugarcane aphid and a spider mite (Oligonychus grypus) that also tested positive for SCYLV in Florida. Healthy and SCYLV-infected leaf pieces of sugarcane and Columbus grass carrying viruliferous aphids or spider mites were transferred to virus-free plants of the yellow leaf susceptible sugarcane cultivar CP96-1252. Three- and 6-months post inoculation, the 108 aphid-inoculated plants of Columbus grass and the 90 mite-inoculated plants of sugarcane tested negative for SCYLV by tissue blot immunoassay (TBIA) or reverse transcription polymerase chain reaction (RT-PCR). Similar results were obtained for 162 aphid-inoculated plants of sugarcane, except for two plants that tested positive for SCYLV by TBIA and RT-PCR. In two field experiments planted with SCYLV-free and virus-infected sugarcane (cultivar CP96-1252), only 18-28% of healthy plants became infected during a 24- to 28-month period. SCYLV prevalence in these field experiments did not differ between aphicide treated and untreated plots. Incidence of M. sacchari haplotypes in the Everglades agricultural area also indicated that the predominant haplotype that is currently colonizing sugarcane was not a vector of SCYLV in Florida. Lack of virus transmission by the spider mite suggested that this arthropod only acquired the virus when feeding on infected plants but was unable to transmit SCYLV. The current vector of SCYLV in Florida remains to be identified.


Assuntos
Afídeos/fisiologia , Luteoviridae/fisiologia , Ácaros/fisiologia , Doenças das Plantas/virologia , Saccharum/virologia , Sorghum/virologia , Animais , Afídeos/efeitos dos fármacos , Afídeos/virologia , Florida , Genótipo , Haplótipos , Insetos Vetores/virologia , Inseticidas/toxicidade , Luteoviridae/genética , Luteoviridae/isolamento & purificação , Ácaros/efeitos dos fármacos , Ácaros/virologia , Folhas de Planta/virologia , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA