Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(3): 483-494, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31943048

RESUMO

Bone and muscle are tightly coupled and form a functional unit under normal conditions. The receptor-activator of nuclear factor κB/receptor-activator of nuclear factor κB ligand/osteoprotegerin (RANK/RANKL/OPG) triad plays a crucial role in bone remodeling. RANKL inhibition by OPG prevents osteoporosis. In contrast, the absence of OPG results in elevated serum RANKL and early onset osteoporosis. However, the impacts of OPG deletion on muscle structure and function are unknown. Our results showed that 1-, 3- and 5-month-old Opg-/- mice have reduced tibial and femoral bone biomechanical properties and higher levels of circulating RANKL. OPG-deficient mice displayed reduced locomotor activity and signs of muscle weakness at 5 months of age. Furthermore, OPG deficiency did not affect the skeletal muscles in 1- and 3-month-old mice. However, it impaired fast-twitch EDL but not slow-twitch Sol muscles in 5-month-old Opg-/- mice. Moreover, 5-month-old Opg-/- mice exhibited selective atrophy of fast-twitch-type IIb myofibers, with increased expression of atrophic proteins such as NF-kB, atrogin-1 and MuRF-1. We used an in vitro model to show that RANKL-stimulated C2C12 myotubes significantly increased the expression of NF-kB, atrogin-1 and MuRF-1. A 2-month anti-RANKL treatment starting at 3 months of age in Opg-/- mice improved voluntary activity, the ex vivo maximum specific force (sP0) of EDL muscles, and whole limb grip force performance and rescued the biomechanical properties of bone. In conclusion, the deletion of OPG and the disruption of the RANKL/OPG balance induced osteoporosis as well as the selective weakness and atrophy of the powerful fast-twitch IIb myofibers, which was partly alleviated by an anti-RANKL treatment.


Assuntos
Debilidade Muscular/patologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Osteoprotegerina/fisiologia , Animais , Remodelação Óssea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Debilidade Muscular/etiologia , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Ligante RANK/metabolismo
2.
Hum Mol Genet ; 28(18): 3101-3112, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31179501

RESUMO

Duchenne muscular dystrophy (DMD) is the most severe form of muscular dystrophy which leads to progressive muscle degeneration and inflammation. The receptor activator of nuclear factor NF-κB ligand (RANKL) and its receptor (RANK), which are expressed in bone and skeletal and cardiac muscles, form a signaling network upstream from nuclear factor-kappa B (NF-κB). We thus hypothesized that prolonged silencing RANKL/RANK signaling would significantly improve DMD. We showed that RANK and RANKL protein levels were increased in the microenvironment of myofibers of 5-month-old utrophin haploinsufficient mdx (mdx/utrn+/-) mice and that a 4 mg/kg dose of anti-RANKL antibody every 3 d for 28 days is optimal and more effective than 1 mg/kg every 3 d for improving the ex vivo maximum specific force (sP0) of dystrophic EDL muscles from mdx/utrn+/- mice. This functional improvement was associated with a reduction in muscle edema, damage, and fibrosis and a marked reduction in serum CK levels. The anti-RANKL treatment inhibited the NF-κB pathway, increased the proportion of anti-inflammatory and non-cytotoxic M2 macrophages, and reduced the number of centrally-nucleated myofibers and the frequency of small myofibers, suggesting that anti-RANKL inhibits the cycle of degeneration/regeneration in dystrophic mice. A three-point bending test showed that a 28-d anti-RANKL treatment increases the mechanical properties of bone in mdx/utrn+/- dystrophic mice. In conclusion, the anti-RANKL treatment protected against skeletal muscle dysfunctions while enhancing bone mechanical properties, filling two needs with one deed in the context of muscular dystrophy.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miosite/metabolismo , Ligante RANK/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Microambiente Celular , Modelos Animais de Doenças , Fibrose , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofias Musculares , Miosite/tratamento farmacológico , Miosite/etiologia , Miosite/patologia , NF-kappa B/metabolismo , Fenótipo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Cells ; 12(11)2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37296659

RESUMO

Cardiomyopathy has become one of the leading causes of death in patients with Duchenne muscular dystrophy (DMD). We recently reported that the inhibition of the interaction between the receptor activator of nuclear factor κB ligand (RANKL) and receptor activator of nuclear factor κB (RANK) significantly improves muscle and bone functions in dystrophin-deficient mdx mice. RANKL and RANK are also expressed in cardiac muscle. Here, we investigate whether anti-RANKL treatment prevents cardiac hypertrophy and dysfunction in dystrophic mdx mice. Anti-RANKL treatment significantly reduced LV hypertrophy and heart mass, and maintained cardiac function in mdx mice. Anti-RANKL treatment also inhibited NFκB and PI3K, two mediators implicated in cardiac hypertrophy. Furthermore, anti-RANKL treatment increased SERCA activity and the expression of RyR, FKBP12, and SERCA2a, leading possibly to an improved Ca2+ homeostasis in dystrophic hearts. Interestingly, preliminary post hoc analyses suggest that denosumab, a human anti-RANKL, reduced left ventricular hypertrophy in two patients with DMD. Taken together, our results indicate that anti-RANKL treatment prevents the worsening of cardiac hypertrophy in mdx mice and could potentially maintain cardiac function in teenage or adult patients with DMD.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Adulto , Animais , Adolescente , Humanos , Criança , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Camundongos Endogâmicos mdx , Ligante RANK/metabolismo , Miocárdio/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo
4.
Front Cell Dev Biol ; 10: 903657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693934

RESUMO

Although their physiology and functions are very different, bones, skeletal and smooth muscles, as well as the heart have the same embryonic origin. Skeletal muscles and bones interact with each other to enable breathing, kinesis, and the maintenance of posture. Often, muscle and bone tissues degenerate synchronously under various conditions such as cancers, space travel, aging, prolonged bed rest, and neuromuscular diseases. In addition, bone tissue, skeletal and smooth muscles, and the heart share common signaling pathways. The RANK/RANKL/OPG pathway, which is essential for bone homeostasis, is also implicated in various physiological processes such as sarcopenia, atherosclerosis, and cardiovascular diseases. Several studies have reported bone-skeletal muscle crosstalk through the RANK/RANKL/OPG pathway. This review will summarize the current evidence indicating that the RANK/RANKL/OPG pathway is involved in muscle function. First, we will briefly discuss the role this pathway plays in bone homeostasis. Then, we will present results from various sources indicating that it plays a physiopathological role in skeletal, smooth muscle, and cardiac functions. Understanding how the RANK/RANKL/OPG pathway interferes in several physiological disorders may lead to new therapeutic approaches aimed at protecting bones and other tissues with a single treatment.

5.
Front Physiol ; 13: 1032450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505042

RESUMO

Skeletal muscle makes up almost half the body weight of heathy individuals and is involved in several vital functions, including breathing, thermogenesis, metabolism, and locomotion. Skeletal muscle exhibits enormous plasticity with its capacity to adapt to stimuli such as changes in mechanical loading, nutritional interventions, or environmental factors (oxidative stress, inflammation, and endocrine changes). Satellite cells and timely recruited inflammatory cells are key actors in muscle homeostasis, injury, and repair processes. Conversely, uncontrolled recruitment of inflammatory cells or chronic inflammatory processes leads to muscle atrophy, fibrosis and, ultimately, impairment of muscle function. Muscle atrophy and loss of function are reported to occur either in physiological situations such as aging, cast immobilization, and prolonged bed rest, as well as in many pathological situations, including cancers, muscular dystrophies, and several other chronic illnesses. In this review, we highlight recent discoveries with respect to the molecular mechanisms leading to muscle atrophy caused by modified mechanical loading, aging, and diseases. We also summarize current perspectives suggesting that the inflammatory process in muscle homeostasis and repair is a double-edged sword. Lastly, we review recent therapeutic approaches for treating muscle wasting disorders, with a focus on the RANK/RANKL/OPG pathway and its involvement in muscle inflammation, protection and regeneration processes.

6.
Mol Ther Methods Clin Dev ; 21: 559-573, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33997104

RESUMO

Although receptor-activator of nuclear factor κB (RANK), its ligand RANKL, and osteoprotegerin (OPG), which are members of the tumor necrosis factor (TNF) superfamily, were first discovered in bone cells, they are also expressed in other cells, including skeletal muscle. We previously showed that the RANK/RANKL/OPG pathway is involved in the physiopathology of Duchenne muscular dystrophy and that a mouse full-length OPG-Fc (mFL-OPG-Fc) treatment is superior to muscle-specific RANK deletion in protecting dystrophic muscles. Although mFL-OPG-Fc has a beneficial effect in the context of muscular dystrophy, the function of human FL-OPG-Fc (hFL-OPG-Fc) during muscle repair is not yet known. In the present study, we investigated the impacts of an hFL-OPG-Fc treatment following the intramuscular injection of cardiotoxin (CTX). We show that a 7-day hFL-OPG-Fc treatment improved force production of soleus muscle. hFL-OPG-Fc also improved soleus muscle integrity and regeneration by increasing satellite cell density and fiber cross-sectional area, attenuating neutrophil inflammatory cell infiltration at 3 and 7 days post-CTX injury, increasing the anti-inflammatory M2 macrophages 7 days post-CTX injury. hFL-OPG-Fc treatment also favored M2 over M1 macrophage phenotypic polarization in vitro. We show for the first time that hFL-OPG-Fc improved myotube maturation and fusion in vitro and reduced cytotoxicity and cell apoptosis. These findings demonstrate that hFL-OPG-Fc has therapeutic potential for muscle diseases in which repair and regeneration are impaired.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA