Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33883279

RESUMO

Plants produce ∼300 aromatic compounds enzymatically linked to prenyl side chains via C-O bonds. These O-prenylated aromatic compounds have been found in taxonomically distant plant taxa, with some of them being beneficial or detrimental to human health. Although their O-prenyl moieties often play crucial roles in the biological activities of these compounds, no plant gene encoding an aromatic O-prenyltransferase (O-PT) has been isolated to date. This study describes the isolation of an aromatic O-PT gene, CpPT1, belonging to the UbiA superfamily, from grapefruit (Citrus × paradisi, Rutaceae). This gene was shown responsible for the biosynthesis of O-prenylated coumarin derivatives that alter drug pharmacokinetics in the human body. Another coumarin O-PT gene encoding a protein of the same family was identified in Angelica keiskei, an apiaceous medicinal plant containing pharmaceutically active O-prenylated coumarins. Phylogenetic analysis of these O-PTs suggested that aromatic O-prenylation activity evolved independently from the same ancestral gene in these distant plant taxa. These findings shed light on understanding the evolution of plant secondary (specialized) metabolites via the UbiA superfamily.


Assuntos
Angelica/genética , Citrus paradisi/genética , Evolução Molecular , Furocumarinas/biossíntese , Proteínas de Plantas/genética , Prenilação , Angelica/metabolismo , Citrus paradisi/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
2.
Molecules ; 27(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335308

RESUMO

Vetiver (Chrysopogon zizanioides (L.) Roberty) is a major tropical perfume crop. Access to its essential oil (EO)-filled roots is nevertheless cumbersome and land-damaging. This study, therefore, evaluated the potential of vetiver cultivation under soilless high-pressure aeroponics (HPA) for volatile organic compound (VOC) production. The VOC accumulation in the roots was investigated by transmission electron microscopy, and the composition of these VOCs was analyzed by gas chromatography coupled with mass spectrometry (GC/MS) after sampling by headspace solid-phase microextraction (HS-SPME). The HPA-grown plants were compared to plants that had been grown in potting soil and under axenic conditions. The HPA-grown plants were stunted, demonstrating less root biomass than the plants that had been grown in potting soil. The roots were slender, thinner, more tapered, and lacked the typical vetiver fragrance. HPA cultivation massively impaired the accumulation of the less-volatile hydrocarbon and oxygenated sesquiterpenes that normally form most of the VOCs. The axenic, tissue-cultured plants followed a similar and more exacerbated trend. Ultrastructural analyses revealed that the HPA conditions altered root ontogeny, whereby the roots contained fewer EO-accumulating cells and hosted fewer and more immature intracellular EO droplets. These preliminary results allowed to conclude that HPA-cultivated vetiver suffers from altered development and root ontology disorders that prevent EO accumulation.


Assuntos
Vetiveria , Óleos Voláteis , Perfumes , Vetiveria/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos Voláteis/química , Microextração em Fase Sólida/métodos
3.
Molecules ; 27(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335304

RESUMO

Bryophytes produce rare and bioactive compounds with a broad range of therapeutic potential, and many species are reported in ethnomedicinal uses. However, only a few studies have investigated their potential as natural anti-inflammatory drug candidate compounds. The present study investigates the anti-inflammatory effects of thirty-two species of bryophytes, including mosses and liverworts, on Raw 264.7 murine macrophages stimulated with lipopolysaccharide (LPS) or recombinant human peroxiredoxin (hPrx1). The 70% ethanol extracts of bryophytes were screened for their potential to reduce the production of nitric oxide (NO), an important pro-inflammatory mediator. Among the analyzed extracts, two moss species significantly inhibited LPS-induced NO production without cytotoxic effects. The bioactive extracts of Dicranum majus and Thuidium delicatulum inhibited NO production in a concentration-dependent manner with IC50 values of 1.04 and 1.54 µg/mL, respectively. The crude 70% ethanol and ethyl acetate extracts were then partitioned with different solvents in increasing order of polarity (n-hexane, diethyl ether, chloroform, ethyl acetate, and n-butanol). The fractions were screened for their inhibitory effects on NO production stimulated with LPS at 1 ng/mL or 10 ng/mL. The NO production levels were significantly affected by the fractions of decreasing polarity such as n-hexane and diethyl ether ones. Therefore, the potential of these extracts to inhibit the LPS-induced NO pathway suggests their effective properties in attenuating inflammation and could represent a perspective for the development of innovative therapeutic agents.


Assuntos
Briófitas , Lipopolissacarídeos , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia
4.
Molecules ; 26(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806877

RESUMO

Coumarins are phytochemicals occurring in the plant kingdom, which biosynthesis is induced under various stress factors. They belong to the wide class of specialized metabolites well known for their beneficial properties. Due to their high and wide biological activities, coumarins are important not only for the survival of plants in changing environmental conditions, but are of great importance in the pharmaceutical industry and are an active source for drug development. The identification of coumarins from natural sources has been reported for different plant species including a model plant Arabidopsis thaliana. In our previous work, we demonstrated a presence of naturally occurring intraspecies variation in the concentrations of scopoletin and its glycoside, scopolin, the major coumarins accumulating in Arabidopsis roots. Here, we expanded this work by examining a larger group of 28 Arabidopsis natural populations (called accessions) and by extracting and analysing coumarins from two different types of tissues-roots and leaves. In the current work, by quantifying the coumarin content in plant extracts with ultra-high-performance liquid chromatography coupled with a mass spectrometry analysis (UHPLC-MS), we detected a significant natural variation in the content of simple coumarins like scopoletin, umbelliferone and esculetin together with their glycosides: scopolin, skimmin and esculin, respectively. Increasing our knowledge of coumarin accumulation in Arabidopsis natural populations, might be beneficial for the future discovery of physiological mechanisms of action of various alleles involved in their biosynthesis. A better understanding of biosynthetic pathways of biologically active compounds is the prerequisite step in undertaking a metabolic engineering research.


Assuntos
Arabidopsis/metabolismo , Cumarínicos/análise , Espectrometria de Massas , Raízes de Plantas/metabolismo , Cromatografia Líquida de Alta Pressão , Cumarínicos/metabolismo
5.
New Phytol ; 225(5): 2166-2182, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31642055

RESUMO

Furanocoumarins (FCs) are plant-specialized metabolites with potent allelochemical properties. The distribution of FCs is scattered with a chemotaxonomical tendency towards four distant families with highly similar FC pathways. The mechanism by which this pathway emerged and spread in plants has not been elucidated. Furanocoumarin biosynthesis was investigated in Ficus carica (fig, Moraceae), focusing on the first committed reaction catalysed by an umbelliferone dimethylallyltransferase (UDT). Comparative RNA-seq analysis among latexes of different fig organs led to the identification of a UDT. The phylogenetic relationship of this UDT to previously reported Apiaceae UDTs was evaluated. The expression pattern of F. carica prenyltransferase 1 (FcPT1) was related to the FC contents in different latexes. Enzymatic characterization demonstrated that one of the main functions of FcPT1 is UDT activity. Phylogenetic analysis suggested that FcPT1 and Apiaceae UDTs are derived from distinct ancestors, although they both belong to the UbiA superfamily. These findings are supported by significant differences in the related gene structures. This report describes the identification of FcPT1 involved in FC biosynthesis in fig and provides new insights into multiple origins of the FC pathway and, more broadly, into the adaptation of plants to their environments.


Assuntos
Dimetilaliltranstransferase , Ficus , Furocumarinas , Dimetilaliltranstransferase/genética , Ficus/genética , Látex , Filogenia
6.
Molecules ; 25(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932881

RESUMO

We have used an original technology (Plant Milking Technology) based on aeroponic cultivation of plants associated with the gentle recovery of active ingredients from roots. Extraction of bioactive molecules was achieved by soaking the roots, still attached to the living plants, into a nontoxic solvent for a 2 h period. This nondestructive recovery process allows using the same root biomass for successive harvesting dates, in a recyclable way. We have applied this technology to Morus alba L. (mulberry tree), an emblematic tree of the Traditional Chinese Medicine (TCM). Trees were aeroponically grown in large-scale devices (100 m2) and were submitted to nitrogen deprivation to increase the content in active molecules (prenylated flavonoids). The Plant Milking technology applied to Morus alba L. allowed to produce an extract enriched in prenylated compounds (18-fold increase when compared to commercial root extract). Prenylated flavonoids (moracenin A and B, kuwanon C, wittiorumin F, morusin) presented a high affinity for the aged-associated collagenase enzyme, which was confirmed by activity inhibition. In accordance, M. alba extract presents efficient properties to regulate the skin matrisome, which is critical during skin aging. The benefits have been especially confirmed in vivo on wrinkle reduction, in a clinical study that involved aged women. Plant Milking technology is an optimal solution to produce active ingredients from plant roots, including trees, that meet both customer expectations around sustainability, as well as the need for an efficient production system for biotechnologists.


Assuntos
Química Farmacêutica/métodos , Fibroblastos/efeitos dos fármacos , Flavonoides/farmacologia , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Idoso , Método Duplo-Cego , Feminino , Flavonoides/isolamento & purificação , Humanos , Medicina Tradicional Chinesa , Pessoa de Meia-Idade , Morus/química , Nitrogênio/química , Extratos Vegetais/farmacologia , Prenilação , Solventes
7.
Plant J ; 89(6): 1119-1132, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27943460

RESUMO

Furanocoumarins are specialized metabolites that are involved in the defense of plants against phytophagous insects. The molecular and functional characterization of the genes involved in their biosynthetic pathway is only partially complete. Many recent reports have described gene clusters responsible for the biosynthesis of specialized metabolites in plants. To investigate possible co-localization of the genes involved in the furanocoumarin pathway, we sequenced parsnip BAC clones spanning two different gene loci. We found that two genes previously identified in this pathway, CYP71AJ3 and CYP71AJ4, were located on the same BAC, whereas a third gene, PsPT1, belonged to a different BAC clone. Chromosome mapping using fluorescence in situ hybridization (FISH) indicated that PsPT1 and the CYP71AJ3-CYP71AJ4 clusters are located on two different chromosomes. Sequencing the BAC clone harboring PsPT1 led to the identification of a gene encoding an Fe(II) α-ketoglutarate-dependent dioxygenase (PsDIOX) situated in the neighborhood of PsPT1 and confirmed the occurrence of a second gene cluster involved in the furanocoumarin pathway. This enzyme metabolizes p-coumaroyl CoA, leading exclusively to the synthesis of umbelliferone, an important intermediate compound in furanocoumarin synthesis. This work provides an insight into the genomic organization of genes from the furanocoumarin biosynthesis pathway organized in more than one gene cluster. It also confirms that the screening of a genomic library and the sequencing of BAC clones represent a valuable tool to identify genes involved in biosynthetic pathways dedicated to specialized metabolite synthesis.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Pastinaca/genética , Pastinaca/metabolismo , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Furocumarinas/metabolismo , Hibridização in Situ Fluorescente , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
8.
J Exp Bot ; 69(7): 1735-1748, 2018 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-29361149

RESUMO

Iron deficiency is a serious agricultural problem, particularly in alkaline soils. Secretion of coumarins by Arabidopsis thaliana roots is induced under iron deficiency. An essential enzyme for the biosynthesis of the major Arabidopsis coumarins, scopoletin and its derivatives, is Feruloyl-CoA 6'-Hydroxylase1 (F6'H1), which belongs to a large enzyme family of the 2-oxoglutarate and Fe2+-dependent dioxygenases. We have functionally characterized another enzyme of this family, which is a close homologue of F6'H1 and is encoded by a strongly iron-responsive gene, At3g12900. We purified At3g12900 protein heterologously expressed in Escherichia coli and demonstrated that it is involved in the conversion of scopoletin into fraxetin, via hydroxylation at the C8 position, and that it thus functions as a scopoletin 8-hydroxylase (S8H). Its function in plant cells was confirmed by the transient expression of S8H protein in Nicotiana benthamiana leaves, followed by metabolite profiling and biochemical and ionomic characterization of Arabidopsis s8h knockout lines grown under various iron regimes. Our results indicate that S8H is involved in coumarin biosynthesis, as part of mechanisms used by plants to assimilate iron.


Assuntos
Arabidopsis/genética , Cumarínicos/metabolismo , Deficiências de Ferro , Arabidopsis/enzimologia , Escopoletina/metabolismo , Metabolismo Secundário
9.
New Phytol ; 211(1): 332-44, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26918393

RESUMO

In Apiaceae, furanocoumarins (FCs) are plant defence compounds that are present as linear or angular isomers. Angular isomers appeared during plant evolution as a protective response to herbivores that are resistant to linear molecules. Isomeric biosynthesis occurs through prenylation at the C6 or C8 position of umbelliferone. Here, we report cloning and functional characterization of two different prenyltransferases, Pastinaca sativa prenyltransferase 1 and 2 (PsPT1 and PsPT2), that are involved in these crucial reactions. Both enzymes are targeted to plastids and synthesize osthenol and demethylsuberosin (DMS) using exclusively umbelliferone and dimethylallylpyrophosphate (DMAPP) as substrates. Enzymatic characterization using heterologously expressed proteins demonstrated that PsPT1 is specialized for the synthesis of the linear form, demethylsuberosin, whereas PsPT2 more efficiently catalyses the synthesis of its angular counterpart, osthenol. These results are the first example of a complementary prenyltransferase pair from a single plant species that is involved in synthesizing defensive compounds. This study also provides a better understanding of the molecular mechanisms governing the angular FC biosynthetic pathway in apiaceous plants, which involves two paralogous enzymes that share the same phylogenetic origin.


Assuntos
Dimetilaliltranstransferase/metabolismo , Evolução Molecular , Furocumarinas/biossíntese , Pastinaca/metabolismo , Proteínas de Plantas/metabolismo , Catharanthus/genética , Membrana Celular/metabolismo , Clonagem Molecular , Cumarínicos/metabolismo , Dimetilaliltranstransferase/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Especificidade por Substrato , Nicotiana/genética , Umbeliferonas/biossíntese , Umbeliferonas/metabolismo
10.
Ann Bot ; 117(3): 479-95, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26912512

RESUMO

BACKGROUND AND AIMS: Carnivorous plants have developed strategies to enable growth in nutrient-poor soils. For the genus Nepenthes, this strategy represents producing pitcher-modified leaves that can trap and digest various prey. These pitchers produce a digestive fluid composed of proteins, including hydrolytic enzymes. The focus of this study was on the identification of these proteins. METHODS: In order to better characterize and have an overview of these proteins, digestive fluid was sampled from pitchers at different stages of maturity from five species of Nepenthes (N. mirabilis, N. alata, N. sanguinea, N. bicalcarata and N. albomarginata) that vary in their ecological niches and grew under different conditions. Three complementary approaches based on transcriptomic resources, mass spectrometry and in silico analysis were used. KEY RESULTS: This study permitted the identification of 29 proteins excreted in the pitchers. Twenty of these proteins were never reported in Nepenthes previously and included serine carboxypeptidases, α- and ß-galactosidases, lipid transfer proteins and esterases/lipases. These 20 proteins display sequence signals allowing their secretion into the pitcher fluid. CONCLUSIONS: Nepenthes pitcher plants have evolved an arsenal of enzymes to digest prey caught in their traps. The panel of new proteins identified in this study provides new insights into the digestive process of these carnivorous plants.


Assuntos
Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Sarraceniaceae/metabolismo , Sequência de Aminoácidos , Simulação por Computador , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Biblioteca Gênica , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteoma/química
11.
Arch Virol ; 161(8): 2273-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27180098

RESUMO

Although poleroviruses are known to infect a broad range of higher plants, carnivorous plants have not yet been reported as hosts. Here, we describe the first polerovirus naturally infecting the pitcher plant Nepenthes mirabilis. The virus was identified through bioinformatic analysis of NGS transcriptome data. The complete viral genome sequence was assembled from overlapping PCR fragments and shown to share 91.1 % nucleotide sequence identity with the US isolate of beet western yellows virus (BWYV). Further analysis of other N. mirabilis plants revealed the presence of additional BWYV isolates differing by several insertion/deletion mutations in ORF5.


Assuntos
Luteoviridae/isolamento & purificação , Magnoliopsida/virologia , Doenças das Plantas/virologia , Animais , Sequência de Bases , Beta vulgaris/virologia , Luteoviridae/classificação , Luteoviridae/genética , Luteoviridae/fisiologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética
12.
Plant J ; 77(4): 627-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24354545

RESUMO

Furanocoumarins constitute a sub-family of coumarin compounds with important defense properties against pathogens and insects, as well as allelopathic functions in plants. Furanocoumarins are divided into two sub-groups according to the alignment of the furan ring with the lactone structure: linear psoralen and angular angelicin derivatives. Determination of furanocoumarin type is based on the prenylation position of the common precursor of all furanocoumarins, umbelliferone, at C6 or C8, which gives rise to the psoralen or angelicin derivatives, respectively. Here, we identified a membrane-bound prenyltransferase PcPT from parsley (Petroselinum crispum), and characterized the properties of the gene product. PcPT expression in various parsley tissues is increased by UV irradiation, with a concomitant increase in furanocoumarin production. This enzyme has strict substrate specificity towards umbelliferone and dimethylallyl diphosphate, and a strong preference for the C6 position of the prenylated product (demethylsuberosin), leading to linear furanocoumarins. The C8-prenylated derivative (osthenol) is also formed, but to a much lesser extent. The PcPT protein is targeted to the plastids in planta. Introduction of this PcPT into the coumarin-producing plant Ruta graveolens showed increased consumption of endogenous umbelliferone. Expression of PcPT and a 4-coumaroyl CoA 2'-hydroxylase gene in Nicotiana benthamiana, which does not produce furanocoumarins, resulted in formation of demethylsuberosin, indicating that furanocoumarin production may be reconstructed by a metabolic engineering approach. The results demonstrate that a single prenyltransferase, such as PcPT, opens the pathway to linear furanocoumarins in parsley, but may also catalyze the synthesis of osthenol, the first intermediate committed to the angular furanocoumarin pathway, in other plants.


Assuntos
Dimetilaliltranstransferase/metabolismo , Furocumarinas/metabolismo , Regulação Enzimológica da Expressão Gênica , Petroselinum/enzimologia , Ruta/enzimologia , Sequência de Bases , Cumarínicos/química , Cumarínicos/metabolismo , Dimetilaliltranstransferase/genética , Furocumarinas/química , Regulação da Expressão Gênica de Plantas , Genes Reporter , Dados de Sequência Molecular , Cebolas/citologia , Cebolas/genética , Cebolas/metabolismo , Especificidade de Órgãos , Petroselinum/genética , Petroselinum/efeitos da radiação , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Ruta/genética , Ruta/efeitos da radiação , Análise de Sequência de DNA , Especificidade por Substrato , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/efeitos da radiação , Raios Ultravioleta , Umbeliferonas/química , Umbeliferonas/metabolismo
13.
BMC Evol Biol ; 15: 122, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26111527

RESUMO

BACKGROUND: Large proliferations of cytochrome P450 encoding genes resulting from gene duplications can be termed as 'blooms', providing genetic material for the genesis and evolution of biosynthetic pathways. Furanocoumarins are allelochemicals produced by many of the species in Apiaceaous plants belonging to the Apioideae subfamily of Apiaceae and have been described as being involved in the defence reaction against phytophageous insects. RESULTS: A bloom in the cytochromes P450 CYP71AJ subfamily has been identified, showing at least 2 clades and 6 subclades within the CYP71AJ subfamily. Two of the subclades were functionally assigned to the biosynthesis of furanocoumarins. Six substrate recognition sites (SRS1-6) important for the enzymatic conversion were investigated in the described cytochromes P450 and display significant variability within the CYP71AJ subfamily. Homology models underline a significant modification of the accession to the iron atom, which might explain the difference of the substrate specificity between the cytochromes P450 restricted to furanocoumarins as substrates and the orphan CYP71AJ. CONCLUSION: Two subclades functionally assigned to the biosynthesis of furanocoumarins and four other subclades were identified and shown to be part of two distinct clades within the CYP71AJ subfamily. The subclades show significant variability within their substrate recognition sites between the clades, suggesting different biochemical functions and providing insights into the evolution of cytochrome P450 'blooms' in response to environmental pressures.


Assuntos
Apiaceae/enzimologia , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Duplicação Gênica , Sequência de Aminoácidos , Apiaceae/química , Apiaceae/classificação , Apiaceae/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Especificidade por Substrato
14.
Plant Physiol ; 166(1): 80-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25077796

RESUMO

Prenyl residues confer divergent biological activities such as antipathogenic and antiherbivorous activities on phenolic compounds, including flavonoids, coumarins, and xanthones. To date, about 1,000 prenylated phenolics have been isolated, with these compounds containing various prenyl residues. However, all currently described plant prenyltransferases (PTs) have been shown specific for dimethylallyl diphosphate as the prenyl donor, while most of the complementary DNAs encoding these genes have been isolated from the Leguminosae. In this study, we describe the identification of a novel PT gene from lemon (Citrus limon), ClPT1, belonging to the homogentisate PT family. This gene encodes a PT that differs from other known PTs, including flavonoid-specific PTs, in polypeptide sequence. This membrane-bound enzyme was specific for geranyl diphosphate as the prenyl donor and coumarin as the prenyl acceptor. Moreover, the gene product was targeted to plastid in plant cells. To our knowledge, this is the novel aromatic PT specific to geranyl diphosphate from citrus species.


Assuntos
Citrus/enzimologia , Dimetilaliltranstransferase/metabolismo , Difosfatos/metabolismo , Diterpenos/metabolismo , Citrus/genética , Dimetilaliltranstransferase/genética , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Ruta , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
15.
Ann Bot ; 115(5): 861-77, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25757470

RESUMO

BACKGROUND AND AIMS: Phenolic compounds contribute to food quality and have potential health benefits. Consequently, they are an important target of selection for Citrus species. Numerous studies on this subject have revealed new molecules, potential biosynthetic pathways and linkage between species. Although polyphenol profiles are correlated with gene expression, which is responsive to developmental and environmental cues, these factors are not monitored in most studies. A better understanding of the biosynthetic pathway and its regulation requires more information about environmental conditions, tissue specificity and connections between competing sub-pathways. This study proposes a rapid method, from sampling to analysis, that allows the quantitation of multiclass phenolic compounds across contrasting tissues and cultivars. METHODS: Leaves and fruits of 11 cultivated citrus of commercial interest were collected from adult trees grown in an experimental orchard. Sixty-four phenolic compounds were simultaneously quantified by ultra-high-performance liquid chromatography coupled with mass spectrometry. KEY RESULTS: Combining data from vegetative tissues with data from fruit tissues improved cultivar classification based on polyphenols. The analysis of metabolite distribution highlighted the massive accumulation of specific phenolic compounds in leaves and the external part of the fruit pericarp, which reflects their involvement in plant defence. The overview of the biosynthetic pathway obtained confirmed some regulatory steps, for example those catalysed by rhamnosyltransferases. The results suggest that three other steps are responsible for the different metabolite profiles in 'Clementine' and 'Star Ruby' grapefruit. CONCLUSIONS: The method described provides a high-throughput method to study the distribution of phenolic compounds across contrasting tissues and cultivars in Citrus, and offers the opportunity to investigate their regulation and physiological roles. The method was validated in four different tissues and allowed the identification and quantitation of 64 phenolic compounds in 20 min, which represents an improvement over existing methods of analysing multiclass polyphenols.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Citrus/metabolismo , Flavonoides/metabolismo , Espectrometria de Massas/métodos , Extratos Vegetais/metabolismo , Polifenóis/metabolismo , Vias Biossintéticas , Citrus/química , Citrus/genética , Análise por Conglomerados , Flavonoides/química , Frutas/química , Frutas/genética , Frutas/metabolismo , Especificidade de Órgãos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Polifenóis/química , Sensibilidade e Especificidade , Especificidade da Espécie
16.
Plant J ; 70(3): 460-70, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22168819

RESUMO

Coumarins are important compounds that contribute to the adaptation of plants to biotic or abiotic stresses. Among coumarins, umbelliferone occupies a pivotal position in the plant phenylpropanoid network. Previous studies indicated that umbelliferone is derived from the ortho-hydroxylation of p-coumaric acid by an unknown biochemical step to yield 2,4-dihydroxycinnamic acid, which then undergoes spontaneous lactonization. Based on a recent report of a gene encoding a 2-oxoglutarate-dependent dioxygenase from Arabidopsis thaliana that exhibited feruloyl CoA 6'-hydroxylase activity (Bourgaud et al., 2006), we combined a bioinformatic approach and a cDNA library screen to identify an orthologous ORF (Genbank accession number JF799117) from Ruta graveolens L. This ORF shares 59% amino acid identity with feruloyl CoA 6'-hydroxylase, was functionally expressed in Escherichia coli, and converted feruloyl CoA into scopoletin and p-coumaroyl CoA into umbelliferone with equal activity. Its bi-functionality was further confirmed in planta: transient expression of JF799117 in Nicotiana benthamiana yielded plants with leaves containing high levels of umbelliferone and scopoletin when compared to control plants, which contained barely detectable traces of these compounds. The expression of JF799117 was also tightly correlated to the amount of umbelliferone that was found in UV-elicited R. graveolens leaves. Therefore, JF799117 encodes a p-coumaroyl CoA 2'-hydroxylase in R. graveolens, which represents a previously uncharacterized step in the synthesis of umbelliferone in plants. Psoralen, which is an important furanocoumarin in R. graveolens, was found to be a competitive inhibitor of the enzyme, and it may exert this effect through negative feedback on the enzyme at an upstream position in the pathway.


Assuntos
Dioxigenases/metabolismo , Ruta/enzimologia , Umbeliferonas/biossíntese , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência Conservada , Cumarínicos/análise , Cumarínicos/isolamento & purificação , Cumarínicos/metabolismo , Dioxigenases/antagonistas & inibidores , Dioxigenases/genética , Dioxigenases/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Furocumarinas/metabolismo , Furocumarinas/farmacologia , Expressão Gênica/genética , Dados de Sequência Molecular , Filogenia , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Caules de Planta/química , Caules de Planta/enzimologia , Caules de Planta/genética , RNA de Plantas/metabolismo , Ruta/química , Ruta/genética , Escopoletina/análise , Escopoletina/metabolismo , Alinhamento de Sequência , Nicotiana/enzimologia , Nicotiana/genética , Transgenes , Umbeliferonas/análise , Umbeliferonas/metabolismo
17.
Am J Bot ; 100(12): 2478-84, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24302695

RESUMO

PREMISE OF THE STUDY: Carnivorous plants have always fascinated scientists because these plants are able to attract, capture, and digest animal prey using their remarkable traps that contain digestive secretions. Nepenthes is one of the largest genera of carnivorous plants, with 120 species described thus far. Despite an outstanding diversity of trap designs, many species are often confused with each other and remain difficult to classify because they resemble pitchers or of the occurrence of interspecific hybrids. METHODS: Here, we propose a new method to easily distinguish Nepenthes species based on a SDS PAGE protein pattern analysis of their pitcher secretions. Intraspecific comparisons were performed among specimens growing in different environmental conditions to ascertain the robustness of this method. KEY RESULTS: Our results show that, at the juvenile stage and in the absence of prey in the pitcher, an examined species is characterized by a specific and stable profile, whatever the environmental conditions. CONCLUSIONS: The method we describe here can be used as a reliable tool to easily distinguish between Nepenthes species and to help with potential identification based on the species-specific protein pattern of their pitcher secretions, which is complementary to the monograph information.


Assuntos
Carnivoridade , Eletroforese em Gel de Poliacrilamida/métodos , Magnoliopsida/genética , Proteínas de Plantas/análise , Estruturas Vegetais/metabolismo , Animais , Magnoliopsida/classificação , Magnoliopsida/metabolismo , Reprodutibilidade dos Testes , Especificidade da Espécie
18.
BMC Plant Biol ; 12: 152, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22931486

RESUMO

BACKGROUND: Furanocoumarins are molecules with proven therapeutic properties and are produced in only a small number of medicinal plant species such as Ruta graveolens. In vivo, these molecules play a protective role against phytophageous insect attack. Furanocoumarins are members of the phenylpropanoids family, and their biosynthetic pathway is initiated from p-coumaroyl coA. The enzymes belonging to the CYP98A cytochrome P450 family have been widely described as being aromatic meta-hydroxylases of various substrates, such as p-coumaroyl ester derivatives, and are involved in the synthesis of coumarins such as scopoletin. In furanocoumarin-producing plants, these enzymes catalyze the step directly downstream of the junction with the furanocoumarin biosynthetic pathway and might indirectly impact their synthesis. RESULTS: In this work, we describe the cloning and functional characterization of the first CYP98A encoding gene isolated from R. graveolens. Using Nicotiana benthamiana as a heterologous expression system, we have demonstrated that this enzyme adds a 3-OH to p-coumaroyl ester derivatives but is more efficient to convert p-coumaroyl quinate into chlorogenic acid than to metabolize p-coumaroyl shikimate. Plants exposed to UV-B stress showed an enhanced expression level of the corresponding gene. The R. graveolens cyp98a22 open reading frame and the orthologous Arabidopsis thaliana cyp98a3 open reading frame were overexpressed in stable transgenic Ruta plants. Both plant series were analyzed for their production of scopoletin and furanocoumarin. A detailed analysis indicates that both genes enhance the production of furanocoumarins but that CYP98A22, unlike CYP98A3, doesn't affect the synthesis of scopoletin. CONCLUSIONS: The overexpression of CYP98A22 positively impacts the concentration of furanocoumarins in R. graveolens. This gene is therefore a valuable tool to engineer plants with improved therapeutical values that might also be more resistant to phytophageous insects.


Assuntos
Ácido Clorogênico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Furocumarinas/biossíntese , Oxigenases de Função Mista/metabolismo , Ruta/genética , Sequência de Aminoácidos , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Furocumarinas/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Vetores Genéticos , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Folhas de Planta/enzimologia , Folhas de Planta/genética , Ruta/enzimologia , Escopoletina/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
19.
Clin Transl Med ; 12(10): e1032, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36245291

RESUMO

Psoriasis is a chronic inflammatory disorder affecting skin and joints that results from immunological dysfunction such as enhanced IL-23 induced Th-17 differentiation. IkappaB-Zeta (IκBζ) is an atypical transcriptional factor of the IκB protein family since, contrary to the other family members, it positively regulates NF-κB pathway by being exclusively localized into the nucleus. IκBζ deficiency reduces visible manifestations of experimental psoriasis by diminishing expression of psoriasis-associated genes. It is thus tempting to consider IκBζ as a potential therapeutic target for psoriasis as well as for other IL23/IL17-mediated inflammatory diseases. In this review, we will discuss the regulation of expression of NFKBIZ and its protein IκBζ, its downstream targets, its involvement in pathogenesis of multiple disorders with emphasis on psoriasis and evidences supporting that inhibition of IκBζ may be a promising alternative to current therapeutic managements of psoriasis.


Assuntos
NF-kappa B , Psoríase , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Inflamação/genética , Inflamação/metabolismo , Interleucina-23 , NF-kappa B/genética , NF-kappa B/metabolismo , Psoríase/genética , Psoríase/metabolismo
20.
Int J Mol Sci ; 12(11): 7971-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174644

RESUMO

Reducing the use of pesticides represents a major challenge of modern agriculture. Plants synthesize secondary metabolites such as polyphenols that participate in the resistance to parasites. The aim of this study was to test: (1) the impact of nitrogen deficiency on tomato (Solanum lycopersicum) leaf composition and more particularly on two phenolic molecules (chlorogenic acid and rutin) as well as on the general plant biomass; and (2) whether this effect continued after a return to normal nitrogen nutrition. Our results showed that plants deprived of nitrogen for 10 or 19 days contained higher levels of chlorogenic acid and rutin than control plants. In addition, this difference persisted when the plants were once again cultivated on a nitrogen-rich medium. These findings offer interesting perspectives on the use of a short period of deprivation to modulate the levels of compounds of interest in a plant.


Assuntos
Nitrogênio/deficiência , Folhas de Planta/química , Solanum lycopersicum/química , Ácido Clorogênico/análise , Solanum lycopersicum/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fenóis/análise , Folhas de Planta/crescimento & desenvolvimento , Rutina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA