Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0110423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830818

RESUMO

IMPORTANCE: SARS-CoV-2 is a new virus responsible for the Covid-19 pandemic. Although SARS-CoV-2 primarily affects the lungs, other organs are infected. Alterations of testosteronemia and spermatozoa motility in infected men have raised questions about testicular infection, along with high level in the testis of ACE2, the main receptor used by SARS-CoV-2 to enter host cells. Using an organotypic culture of human testis, we found that SARS-CoV-2 replicated with slow kinetics in the testis. The virus first targeted testosterone-producing Leydig cells and then germ-cell nursing Sertoli cells. After a peak followed by the upregulation of antiviral effectors, viral replication in the testis decreased and did not induce any major damage to the tissue. Altogether, our data show that SARS-CoV-2 replicates in the human testis to a limited extent and suggest that testicular damages in infected patients are more likely to result from systemic infection and inflammation than from viral replication in the testis.


Assuntos
SARS-CoV-2 , Testículo , Replicação Viral , Humanos , Masculino , SARS-CoV-2/fisiologia , Testículo/virologia , Células Intersticiais do Testículo/virologia , Células de Sertoli/virologia
2.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32878892

RESUMO

Yellow fever virus (YFV) is an RNA virus primarily targeting the liver. Severe YF cases are responsible for hemorrhagic fever, plausibly precipitated by excessive proinflammatory cytokine response. Pathogen recognition receptors (PRRs), such as the cytoplasmic retinoic acid inducible gene I (RIG-I)-like receptors (RLRs), and the viral RNA sensor protein kinase R (PKR), are known to initiate a proinflammatory response upon recognition of viral genomes. Here, we sought to reveal the main determinants responsible for the acute cytokine expression occurring in human hepatocytes following YFV infection. Using a RIG-I-defective human hepatoma cell line, we found that RIG-I largely contributes to cytokine secretion upon YFV infection. In infected RIG-I-proficient hepatoma cells, RIG-I was localized in stress granules. These granules are large aggregates of stalled translation preinitiation complexes known to concentrate RLRs and PKR and are so far recognized as hubs orchestrating RNA virus sensing. Stable knockdown of PKR in hepatoma cells revealed that PKR contributes to both stress granule formation and cytokine induction upon YFV infection. However, stress granule disruption did not affect the cytokine response to YFV infection, as assessed by small interfering RNA (siRNA)-knockdown-mediated inhibition of stress granule assembly. Finally, no viral RNA was detected in stress granules using a fluorescence in situ hybridization approach coupled with immunofluorescence. Our findings suggest that both RIG-I and PKR mediate proinflammatory cytokine induction in YFV-infected hepatocytes, in a stress granule-independent manner. Therefore, by showing the uncoupling of the cytokine response from the stress granule formation, our model challenges the current view in which stress granules are required for the mounting of the acute antiviral response.IMPORTANCE Yellow fever is a mosquito-borne acute hemorrhagic disease caused by yellow fever virus (YFV). The mechanisms responsible for its pathogenesis remain largely unknown, although increased inflammation has been linked to worsened outcome. YFV targets the liver, where it primarily infects hepatocytes. We found that two RNA-sensing proteins, RIG-I and PKR, participate in the induction of proinflammatory mediators in human hepatocytes infected with YFV. We show that YFV infection promotes the formation of cytoplasmic structures, termed stress granules, in a PKR- but not RIG-I-dependent manner. While stress granules were previously postulated to be essential platforms for immune activation, we found that they are not required for the production of proinflammatory mediators upon YFV infection. Collectively, our work uncovered molecular events triggered by the replication of YFV, which could prove instrumental in clarifying the pathogenesis of the disease, with possible repercussions for disease management.


Assuntos
Proteína DEAD-box 58/metabolismo , Vírus da Febre Amarela/metabolismo , eIF-2 Quinase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinoma Hepatocelular , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/metabolismo , Proteína DEAD-box 58/deficiência , Proteína DEAD-box 58/genética , DNA Helicases/genética , Técnicas de Silenciamento de Genes , Haplorrinos , Hepatócitos/virologia , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Interferente Pequeno , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Receptores Imunológicos , Antígeno-1 Intracelular de Células T/genética , Transcriptoma , eIF-2 Quinase/genética
3.
Eur J Immunol ; 46(10): 2340-2351, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27469325

RESUMO

Class-switched memory B cells are key components of the "reactive" humoral immunity, which ensures a fast and massive secretion of high-affinity antigen-specific antibodies upon antigenic challenge. In humans, IgA class-switched (IgA+ ) memory B cells and IgA antibodies are abundant in the blood. Although circulating IgA+ memory B cells and their corresponding secreted immunoglobulins likely possess major protective and/or regulatory immune roles, little is known about their specificity and function. Here, we show that IgA+ and IgG+ memory B-cell antibodies cloned from the same healthy humans share common immunoglobulin gene features. IgA and IgG memory antibodies have comparable lack of reactivity to vaccines, common mucosa-tropic viruses and commensal bacteria. However, the IgA+ memory B-cell compartment contains fewer polyreactive clones and importantly, only rare self-reactive clones compared to IgG+ memory B cells. Self-reactivity of IgAs is acquired following B-cell affinity maturation but not antibody class switching. Together, our data suggest the existence of different regulatory mechanisms for removing autoreactive clones from the IgG+ and IgA+ memory B-cell repertoires, and/or different maturation pathways potentially reflecting the distinct nature and localization of the cognate antigens recognized by individual B-cell populations.


Assuntos
Diversidade de Anticorpos , Autoanticorpos/metabolismo , Linfócitos B/fisiologia , Imunoglobulina A/metabolismo , Memória Imunológica , Afinidade de Anticorpos , Formação de Anticorpos , Autoantígenos/metabolismo , Autoimunidade , Seleção Clonal Mediada por Antígeno , Células Clonais , Humanos , Switching de Imunoglobulina , Imunoglobulina G/metabolismo , Análise de Célula Única
4.
Int J Biol Macromol ; 209(Pt A): 1379-1388, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35460753

RESUMO

SARS-CoV-2 engages with human cells through the binding of its Spike receptor-binding domain (S-RBD) to the receptor ACE2. Molecular blocking of this engagement represents a proven strategy to treat COVID-19. Here, we report a single-chain antibody (nanobody, DL4) isolated from immunized alpaca with picomolar affinity to RBD. DL4 neutralizes SARS-CoV-2 pseudoviruses with an IC50 of 0.101 µg mL-1 (6.2 nM). A crystal structure of the DL4-RBD complex at 1.75-Å resolution unveils the interaction detail and reveals a direct competition mechanism for DL4's ACE2-blocking and hence neutralizing activity. The structural information allows us to rationally design a mutant with higher potency. Our work adds diversity of neutralizing nanobodies against SARS-CoV-2 and should encourage protein engineering to improve antibody affinities in general.


Assuntos
SARS-CoV-2 , Anticorpos de Domínio Único , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Ligação Proteica , Engenharia de Proteínas , SARS-CoV-2/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Glicoproteína da Espícula de Coronavírus/química
5.
Front Microbiol ; 13: 875840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722331

RESUMO

SARS-CoV-2 and its variants, such as the Omicron continue to threaten public health. The virus recognizes the host cell by attaching its Spike (S) receptor-binding domain (RBD) to the host receptor, ACE2. Therefore, RBD is a primary target for neutralizing antibodies and vaccines. Here, we report the isolation and biological and structural characterization of a single-chain antibody (nanobody) from RBD-immunized alpaca. The nanobody, named DL28, binds to RBD tightly with a K D of 1.56 nM and neutralizes the original SARS-CoV-2 strain with an IC50 of 0.41 µg mL-1. Neutralization assays with a panel of variants of concern (VOCs) reveal its wide-spectrum activity with IC50 values ranging from 0.35 to 1.66 µg mL-1 for the Alpha/Beta/Gamma/Delta and an IC50 of 0.66 µg mL-1 for the currently prevalent Omicron. Competition binding assays show that DL28 blocks ACE2-binding. However, structural characterizations and mutagenesis suggest that unlike most antibodies, the blockage by DL28 does not involve direct competition or steric hindrance. Rather, DL28 may use a "conformation competition" mechanism where it excludes ACE2 by keeping an RBD loop in a conformation incompatible with ACE2-binding.

6.
J Clin Invest ; 128(10): 4697-4710, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30063220

RESUMO

Zika virus (ZIKV) is a teratogenic mosquito-borne flavivirus that can be sexually transmitted from man to woman. The finding of high viral loads and prolonged viral shedding in semen suggests that ZIKV replicates within the human male genital tract, but its target organs are unknown. Using ex vivo infection of organotypic cultures, we demonstrated here that ZIKV replicates in human testicular tissue and infects a broad range of cell types, including germ cells, which we also identified as infected in semen from ZIKV-infected donors. ZIKV had no major deleterious effect on the morphology and hormonal production of the human testis explants. Infection induced a broad antiviral response but no IFN upregulation and minimal proinflammatory response in testis explants, with no cytopathic effect. Finally, we studied ZIKV infection in mouse testis and compared it to human infection. This study provides key insights into how ZIKV may persist in semen and alter semen parameters, as well as a valuable tool for testing antiviral agents.


Assuntos
Células Germinativas/metabolismo , Testículo/metabolismo , Replicação Viral , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Animais , Chlorocebus aethiops , Células Germinativas/patologia , Células Germinativas/virologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Testículo/patologia , Testículo/virologia , Células Vero , Infecção por Zika virus/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA