Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Immunol ; 44(2): 110-118, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599743

RESUMO

In contrast to conventional dendritic cells (cDCs) that are constantly exposed to microbial signals at anatomical barriers, cDCs in systemic lymphoid organs are sheltered from proinflammatory stimulation in the steady state but respond to inflammatory signals by gaining specific immune functions in a process referred to as maturation. Recent findings show that, during maturation, a population of systemic tolerogenic cDCs undergoes an acute tumor necrosis factor α (TNFα)-mediated cell death, resulting in the loss of tolerance-inducing capacity. This tolerogenic cDC population is restored upon return to the homeostatic baseline. We propose that such a dynamic reshaping of cDC populations becomes the foundation of a novel framework for maintaining tolerance at the steady state while being conducive to unhampered initiation of immune responses under proinflammatory conditions.


Assuntos
Células Dendríticas , Tolerância Imunológica , Humanos
2.
Immunity ; 45(5): 1066-1077, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27793593

RESUMO

Dendritic cells (DCs) initiate immunity and also antigen-specific tolerance mediated by extrathymic regulatory T (Treg) cells, yet it remains unclear how DCs regulate induction of such tolerance. Here, we report that efficient induction of Treg cells was instructed by BTLA+DEC205+CD8+CD11c+ DCs and the immunomodulatory functions of BTLA. In contrast, T cell activation in steady state by total CD11c+ DCs that include a majority of DCs that do not express BTLA did not induce Treg cells and had no lasting impact on subsequent immune responses. Engagement of HVEM, a receptor of BTLA, promoted Foxp3 expression in T cells through upregulation of CD5. In contrast, T cells activated in the absence of BTLA and HVEM-mediated functions remained CD5lo and therefore failed to resist the inhibition of Foxp3 expression in response to effector cell-differentiating cytokines. Thus, DCs require BTLA and CD5-dependent mechanisms to actively adjust tolerizing T cell responses under steady-state conditions.


Assuntos
Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Ativação Linfocitária/imunologia , Receptores Imunológicos/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Encefalomielite Autoimune Experimental/imunologia , Citometria de Fluxo , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real
3.
J Immunol ; 208(3): 539-547, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35042789

RESUMO

Conventional dendritic cells (cDC) control adaptive immunity by sensing damage- and pathogen-associated molecular patterns and then inducing defined differentiation programs in T cells. Nevertheless, in the absence of specific proimmunogenic innate signals, generally referred to as the steady state, cDC also activate T cells to induce specific functional fates. Consistent with the maintenance of homeostasis, such specific outcomes of T cell activation in the steady state include T cell clonal anergy, deletion, and conversion of peripheral regulatory T cells (pTregs). However, the robust induction of protolerogenic mechanisms must be reconciled with the initiation of autoimmune responses and cancer immunosurveillance that are also observed under homeostatic conditions. Here we review the diversity of fates and functions of T cells involved in the opposing immunogenic and tolerogenic processes induced in the steady state by the relevant mechanisms of systemic cDC present in murine peripheral lymphoid organs.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoimunidade/imunologia , Diferenciação Celular/imunologia , Humanos , Tolerância Imunológica/imunologia , Camundongos , Neoplasias/imunologia
4.
Mo Med ; 118(4): 334-339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373668

RESUMO

Despite substantial progress in developing new immunotherapies against multiple sclerosis (MS), currently available immunotherapies are only partially effective for this debilitating neurological disease, thus necessitating new therapeutic approaches. Here, we review the immunotherapies already approved for MS as well as relevant clinical trials. Further, we present some experimental approaches that are currently being developed and are focused on modulating the functions of dendritic cells and regulatory T cells.


Assuntos
Esclerose Múltipla , Humanos , Imunoterapia , Esclerose Múltipla/terapia
5.
Crit Rev Immunol ; 38(5): 379-401, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30792568

RESUMO

By acquiring, processing, and presenting both foreign and self-antigens, dendritic cells (DCs) initiate T cell activation that is shaped through the immunomodulatory functions of a variety of cell-membrane-bound molecules including BTLA-HVEM, CD40-CD40L, CTLA-4-CD80/CD86, CD70-CD27, ICOS-ICOS-L, OX40-OX40L, and PD-L1-PD-1, as well as several key cytokines and enzymes such as interleukin-6 (IL-6), IL-12, IL-23, IL-27, transforming growth factor-beta 1 (TGF-ß1), retinaldehyde dehydrogenase (Raldh), and indoleamine 2,3-dioxygenase (IDO). Some of these distinct immunomodulatory signals are mediated by specific subsets of DCs, therefore contributing to the functional specialization of DCs in the priming and regulation of immune responses. In addition to responding to the DC-mediated signals, T cells can reciprocally modulate the immunomodulatory capacities of DCs, further refining immune responses. Here, we review recent studies, particularly in experimental mouse systems, that have delineated the integrated mechanisms of crucial immunomodulatory pathways that enable specific populations of DCs and T cells to work intimately together as single functional units that are indispensable for the maintenance of immune homeostasis.


Assuntos
Células Dendríticas/imunologia , Imunomodulação/imunologia , Linfócitos T/imunologia , Animais , Humanos
6.
Cell Syst ; 15(1): 83-103.e11, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38198894

RESUMO

The currently predominant approach to transcriptomic and epigenomic single-cell analysis depends on a rigid perspective constrained by reduced dimensions and algorithmically derived and annotated clusters. Here, we developed Seqtometry (sequencing-to-measurement), a single-cell analytical strategy based on biologically relevant dimensions enabled by advanced scoring with multiple gene sets (signatures) for examination of gene expression and accessibility across various organ systems. By utilizing information only in the form of specific signatures, Seqtometry bypasses unsupervised clustering and individual annotations of clusters. Instead, Seqtometry combines qualitative and quantitative cell-type identification with specific characterization of diverse biological processes under experimental or disease conditions. Comprehensive analysis by Seqtometry of various immune cells as well as other cells from different organs and disease-induced states, including multiple myeloma and Alzheimer's disease, surpasses corresponding cluster-based analytical output. We propose Seqtometry as a single-cell sequencing analysis approach applicable for both basic and clinical research.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Análise por Conglomerados
7.
Biology (Basel) ; 12(5)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37237529

RESUMO

T cell responses to cognate antigens crucially depend on the specific functionality of dendritic cells (DCs) activated in a process referred to as maturation. Maturation was initially described as alterations of the functional status of DCs in direct response to multiple extrinsic innate signals derived from foreign organisms. More recent studies, conducted mainly in mice, revealed an intricate network of intrinsic signals dependent on cytokines and various immunomodulatory pathways facilitating communication between individual DCs and other cells for the orchestration of specific maturation outcomes. These signals selectively amplify the initial activation of DCs mediated by innate factors and dynamically shape DC functionalities by ablating DCs with specific functions. Here, we discuss the effects of the initial activation of DCs that crucially includes the production of cytokine intermediaries to collectively achieve amplification of the maturation process and further precise sculpting of the functional landscapes among DCs. By emphasizing the interconnectedness of the intracellular and intercellular mechanisms, we reveal activation, amplification, and ablation as the mechanistically integrated components of the DC maturation process.

8.
Antibodies (Basel) ; 11(1)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35225867

RESUMO

Recombinant immunoglobulins, derived from monoclonal antibodies recognizing the defined surface epitopes expressed on dendritic cells, have been employed for the past two decades to deliver antigens to dendritic cells in vivo, serving as critical tools for the investigation of the corresponding T cell responses. These approaches originated with the development of the recombinant chimeric antibody against a multilectin receptor, DEC-205, which is present on subsets of murine and human conventional dendritic cells. Following the widespread application of antigen targeting through DEC-205, similar approaches then utilized other epitopes as entry points for antigens delivered by specific antibodies to multiple types of dendritic cells. Overall, these antigen-delivery methodologies helped to reveal the mechanisms underlying tolerogenic and immunogenic T cell responses orchestrated by dendritic cells. Here, we discuss the relevant experimental strategies as well as their future perspectives, including their translational relevance.

9.
Eur J Cell Biol ; 101(3): 151242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35636259

RESUMO

Homeodomain only protein (Hopx, HOPX) is a highly evolutionarily conserved, homeodomain-containing, small protein expressed in multiple tissues and cell types, including those of hematopoietic origin. The quasi-ubiquitous presence of Hopx contrasts with its specialized and context-dependent roles in various cell lineages. Recently, versatile functions of Hopx have been revealed in immune cells, including T lymphocytes with effector and regulatory roles. The induction of Hopx expression can indicate early developmental and differentiation pathways, and early Hopx expression characterizes the recently identified pre-effector T cells that become destined for subsequent effector differentiation. Further, specific molecular mechanisms of Hopx are indispensable for the functional homeostasis of peripherally induced regulatory T cells (pTreg cells). Here we offer a perspective on these diverse roles of Hopx in immune cells and discuss the recent advances that helped to clarify the relevant functions and mechanisms of Hopx.


Assuntos
Proteínas de Homeodomínio , Diferenciação Celular/fisiologia , Linhagem da Célula , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
10.
Cell Rep ; 39(2): 110657, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417681

RESUMO

It remains unclear how the pro-immunogenic maturation of conventional dendritic cells (cDCs) abrogates their tolerogenic functions. Here, we report that the loss of tolerogenic functions depends on the rapid death of BTLAhi cDC1s, which, in the steady state, are present in systemic peripheral lymphoid organs and promote tolerance that limits subsequent immune responses. A canonical inducer of maturation, lipopolysaccharide (LPS), initiates a burst of tumor necrosis factor alpha (TNF-α) production and the resultant acute death of BTLAhi cDC1s mediated by tumor necrosis factor receptor 1. The ablation of these individual tolerogenic cDCs is amplified by TNF-α produced by neighboring cells. This loss of tolerogenic cDCs is transient, accentuating the restoration of homeostatic conditions through biological turnover of cDCs in vivo. Therefore, our results reveal that the abrogation of tolerogenic functions during an acute immunogenic maturation depends on an ablation of the tolerogenic cDC population, resulting in a dynamic remodeling of the cDC functional landscape.


Assuntos
Células Dendríticas , Fator de Necrose Tumoral alfa , Tolerância Imunológica , Lipopolissacarídeos/farmacologia
11.
Heliyon ; 7(11): e08311, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34805566

RESUMO

Homeodomain only protein (Hopx) is a regulator of cell differentiation and function, and it has also emerged as a crucial marker of specific developmental and differentiation potentials. Hopx expression and functions have been identified in some stem cells, tumors, and in certain immune cells. However, expression of Hopx in immune cells remains insufficiently characterized. Here we report a comprehensive pattern of Hopx expression in multiple types of immune cells under steady state conditions. By utilizing single-cell RNA sequencing (scRNA-seq) and flow cytometric analysis, we characterize a constitutive expression of Hopx in specific subsets of CD4+ and CD8+ T cells and B cells, as well as natural killer (NK), NKT, and myeloid cells. In contrast, Hopx expression is not present in conventional dendritic cells and eosinophils. The utility of identifying expression of Hopx in immune cells may prove vital in delineating specific roles of Hopx under multiple immune conditions.

12.
Cell Rep ; 33(8): 108424, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33238127

RESUMO

Various processes induce and maintain immune tolerance, but effector T cells still arise under minimal perturbations of homeostasis through unclear mechanisms. We report that, contrary to the model postulating primarily tolerogenic mechanisms initiated under homeostatic conditions, effector programming is an integral part of T cell fate determination induced by antigenic activation in the steady state. This effector programming depends on a two-step process starting with induction of effector precursors that express Hopx and are imprinted with multiple instructions for their subsequent terminal effector differentiation. Such molecular circuits advancing specific terminal effector differentiation upon re-stimulation include programmed expression of interferon-γ, whose production then promotes expression of T-bet in the precursors. We further show that effector programming coincides with regulatory conversion among T cells sharing the same antigen specificity. However, conventional type 2 dendritic cells (cDC2) and T cell functions of mammalian target of rapamycin complex 1 (mTORC1) increase effector precursor induction while decreasing the proportion of T cells that can become peripheral Foxp3+ regulatory T (pTreg) cells.


Assuntos
Antígenos/imunologia , Antígenos CD4/imunologia , Tolerância Imunológica/imunologia , Animais , Diferenciação Celular , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA