RESUMO
Low-temperature electrostatic force microscopy (EFM) is used to probe unconventional domain walls in the improper ferroelectric semiconductor Er0.99Ca0.01MnO3 down to cryogenic temperatures. The low-temperature EFM maps reveal pronounced electric far fields generated by partially uncompensated domain-wall bound charges. Positively and negatively charged walls display qualitatively different fields as a function of temperature, which we explain based on different screening mechanisms and the corresponding relaxation time of the mobile carriers. Our results demonstrate domain walls in improper ferroelectrics as a unique example of natural interfaces that are stable against the emergence of electrically uncompensated bound charges. The outstanding robustness of improper ferroelectric domain walls in conjunction with their electronic versatility brings us an important step closer to the development of durable and ultrasmall electronic components for next-generation nanotechnology.
RESUMO
The influence of Ca codoping on the optical absorption, photo-, radio-, and thermo-luminescence properties of YAlO3 :Ce (YAP:Ce) crystals has been studied for four different calcium concentrations ranging from 0 to 500â ppm. Ca codoping results in a partial oxidation of Ce3+ into Ce4+ , The luminescence time response under pulsed X-ray excitation of the Ce3+ /Ce4+ admixure clearly demonstrates the role of hole migration on both the rise time and the generally observed slow components. From an application point of view, Ca codoping significantly improves the timing performances, but the induced presence of Ce4+ ions is also the cause of a reduction in scintillation efficiency.
RESUMO
The title compound, thallium magnesium trichloride, has been identified as a scintillator with both moderate gamma-stopping power and moderate light yield. Knowledge of its crystal structure is needed for further development. This work determines the crystal structure of TlMgCl3 to be hexa-gonal P63/mmc (No. 194) and isostructural with RbMgCl3, contrary to previously reported data. This structure was obtained by single-crystal X-ray diffraction and was further confirmed by neutron diffraction measurements. Extending neutron diffraction measurements to high temperature, the data show that TlMgCl3 maintains this crystal structure from 290â K up through 725â K, approaching the melting point of 770â K. Anisotropic thermal expansion coefficients increase over this temperature range, from 31 to 38 × 10-6 K-1 along the a axis and from 19 to 34 × 10-6 K-1 along the c axis.
RESUMO
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 µm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes.