Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 527(3): 702-708, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32410735

RESUMO

The spread of COVID-19 caused by the SARS-CoV-2 outbreak has been growing since its first identification in December 2019. The publishing of the first SARS-CoV-2 genome made a valuable source of data to study the details about its phylogeny, evolution, and interaction with the host. Protein-protein binding assays have confirmed that Angiotensin-converting enzyme 2 (ACE2) is more likely to be the cell receptor through which the virus invades the host cell. In the present work, we provide an insight into the interaction of the viral spike Receptor Binding Domain (RBD) from different coronavirus isolates with host ACE2 protein. By calculating the binding energy score between RBD and ACE2, we highlighted the putative jump in the affinity from a progenitor form of SARS-CoV-2 to the current virus responsible for COVID-19 outbreak. Our result was consistent with previously reported phylogenetic analysis and corroborates the opinion that the interface segment of the spike protein RBD might be acquired by SARS-CoV-2 via a complex evolutionary process rather than a progressive accumulation of mutations. We also highlighted the relevance of Q493 and P499 amino acid residues of SARS-CoV-2 RBD for binding to human ACE2 and maintaining the stability of the interface. Moreover, we show from the structural analysis that it is unlikely for the interface residues to be the result of genetic engineering. Finally, we studied the impact of eight different variants located at the interaction surface of ACE2, on the complex formation with SARS-CoV-2 RBD. We found that none of them is likely to disrupt the interaction with the viral RBD of SARS-CoV-2.


Assuntos
Betacoronavirus/química , Peptidil Dipeptidase A/química , Glicoproteína da Espícula de Coronavírus/química , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Sítios de Ligação , COVID-19 , Infecções por Coronavirus , Humanos , Simulação de Acoplamento Molecular , Pandemias , Filogenia , Pneumonia Viral , Domínios Proteicos , Estrutura Terciária de Proteína , SARS-CoV-2
2.
Poult Sci ; 102(1): 102253, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455491

RESUMO

Swollen Head Syndrome (SHS) is an economically important viral disease of chickens caused by avian metapneumovirus (aMPV). The virus comprises 6 different subtypes (A,B,C,D, New-1 and New-2). To date, no information was available on the presence of the virus in Tunisian poultry. The present work aims to detect the presence of (aMPV) in broiler chicken in Tunisia, then to characterise the isolates in order to determine their subtype and to estimate their geographic origin of introduction. A total of 289 samples were collected, aMPV detection was detected by real time RT-PCR and molecular characterization was warried out by Sanger sequencing on the glycoprotein (G) gene. Phylogenetic analysis was carried out using Beast 2 software. Out of the 289 samples, 21 were revealed positive to aMPV. Only 2 isolates have been confirmed by sequencing analysis ; one isolate sampled in 2015 and another in 2019. Based on the partial G gene sequence, analysis of these 2 Tunisian isolates showed that they belong to subtype B. The isolate sampled in 2015, appeared to be phylogenetically related to derived vaccine strain. However, the one sampled in 2019 appeared to be a field strain. Phylodynamic analysis provided evidence that this field strain derived from a Spanish strain and probably the virus has been introduced from Spain to North Africa back in 2016. This study is the first that highlighted the circulation of (aMPV) in Tunisia. It is possible that aMPV has been circulating in Tunisia and neighboring countries without being detected. Also, multiple strains could be present and therefore multiple introductions have happened. Through this study, we shed the light on the importance of reinforcing farms biosecurity as well as virological surveillance.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Doenças das Aves Domésticas , Animais , Metapneumovirus/genética , Galinhas , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/veterinária , Filogenia , Tunísia/epidemiologia , Perus
3.
Viruses ; 13(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960742

RESUMO

Rabies is a viral zoonosis that is transmissible to humans via domestic and wild animals. There are two epidemiological cycles for rabies, the urban and the sylvatic cycles. In an attempt to study the epidemiological role of wild canidae in rabies transmission, the present study aimed to analyze the genetic characteristics of virus isolates and confirm prior suggestions that rabies is maintained through a dog reservoir in Tunisia. Virus strains isolated from wild canidae were subject to viral sequencing, and Bayesian phylogenetic analysis was performed using Beast2 software. Essentially, the virus strains isolated from wild canidae belonged to the Africa-1 clade, which clearly diverges from fox-related strains. Our study also demonstrated that genetic characteristics of the virus isolates were not as distinct as could be expected if a wild reservoir had already existed. On the contrary, the geographic landscape is responsible for the genetic diversity of the virus. The landscape itself could have also acted as a natural barrier to the spread of the virus.


Assuntos
Animais Selvagens/virologia , Canidae/virologia , Vírus da Raiva/genética , Raiva/veterinária , Animais , Reservatórios de Doenças/virologia , Cães/virologia , Evolução Molecular , Raposas/virologia , Variação Genética , Chacais/virologia , Epidemiologia Molecular , Filogenia , Raiva/epidemiologia , Raiva/virologia , Vírus da Raiva/classificação , Vírus da Raiva/isolamento & purificação , Tunísia/epidemiologia
4.
Prev Vet Med ; 185: 105195, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33212333

RESUMO

Tunisia is an endemic country for dog mediated rabies. An increase in canine rabies cases during the last decade has been suspected. Since no studies have been conducted on rabies spatial distribution, the present work was focused on spatiotemporal evolution of rabies in Tunisia during the 2011-2016 period with a special focus on the reservoir species. Data collected concerned suspected dogs that originate from the whole country. Surveillance indicators such as positive fractions and number of suspected dogs received at the laboratory have been calculated. Spatiotemporal hotspots were then mapped, spatial and spatio-temporal analysis were carried out using discrete Poisson spatial model and space-time permutation models available in SaTScan9 software. The study revealed that an actual increase in canine rabies incidence occurred in Tunisia since 2012. Spatial and spatio-temporal analysis identified clusters centered in the North and in the Center East of the country. Spatio-temporal clusters were non overlapping, indicating that this spatial distribution is not fixed through time. A large heterogeneity in surveillance indicators such as number of suspected dogs was associated to the distance to the laboratory or to insufficient coordination between governorates.


Assuntos
Doenças do Cão/epidemiologia , Raiva/veterinária , Animais , Doenças do Cão/virologia , Cães , Incidência , Raiva/epidemiologia , Raiva/virologia , Estações do Ano , Análise Espaço-Temporal , Tunísia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA