RESUMO
Non-ossifying fibroma (NOF) has been an intriguing entity since its first description. It is the most common bone tumour, is usually asymptomatic affecting children and adolescents, is composed of a heterogeneous cell population, and undergoes spontaneous regression after puberty. In a recent article in The Journal of Pathology, Baumhoer and colleagues demonstrate mutations activating the RAS-MAPK pathway (KRAS, FGFR1 and NF1) in â¼80% of the tumours. Activation of the RAS-MAPK pathway by somatic mutations is found in a plethora of tumour types, both benign and malignant, while germline mutations cause a wide range of syndromes collectively termed the RASopathies. Their findings indicate that NOF, for long thought to be reactive, should be considered a true neoplasm. Moreover, their data suggest that only a subset of cells in the lesion contain the mutation. A second cell population consisting of histiocytes and osteoclast-like giant cells appears to be reactive. This intimate relation between WT and mutant cells is also frequently encountered in other benign and locally aggressive bone tumours and seems essential for tumourigenesis. The spontaneous regression remains enigmatic and it is tempting to speculate that pubertal hormonal signalling, especially increased oestrogen levels, affect the balance between mutant and WT cells. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Assuntos
Neoplasias Ósseas , Fibroma , Adolescente , Transformação Celular Neoplásica , Criança , Humanos , Mutação , Reino UnidoRESUMO
Sarcomas are a rare group of tumors of mesenchymal origin. Metastatic sarcomas are often difficult to treat and unresponsive to standard radio- and chemotherapy, resulting in a poor survival rate for patients. Novel treatments with immune checkpoint inhibitors have been proven to prolong survival of patients with a variety of cancers, including metastatic melanoma, lung, and renal cell carcinoma. Since immune checkpoint inhibitors could provide a novel treatment option for patients with sarcomas, clinical trials investigating their efficacy in these group of tumors are ongoing. However, the discrimination of patients that are the most likely to respond to these treatments is still an obstacle in the design of clinical trials. In this review, we provide a brief overview of the mechanisms of action of immune checkpoint inhibitors and discuss the proposed biomarkers of therapy response, such as lymphocytic infiltration, intratumoral PD-L1 expression, and mutational load in sarcomas.
Assuntos
Antineoplásicos/uso terapêutico , Receptores Coestimuladores e Inibidores de Linfócitos T/antagonistas & inibidores , Drogas em Investigação/uso terapêutico , Imunoterapia , Sarcoma/tratamento farmacológico , Animais , Anticorpos Bloqueadores/efeitos adversos , Anticorpos Bloqueadores/farmacologia , Anticorpos Bloqueadores/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Quimiotaxia de Leucócito/efeitos dos fármacos , Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Drogas em Investigação/efeitos adversos , Drogas em Investigação/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/tendências , Ativação Linfocitária/efeitos dos fármacos , Sarcoma/imunologia , Sarcoma/metabolismo , Sarcoma/secundário , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
Osteosarcoma is the most frequent bone cancer in children and young adults. The outcome of patients with advanced disease is dismal. Exploitation of tumor-immune cell interactions may provide novel therapeutic approaches. CD70-CD27 interactions are important for the regulation of adaptive immunity. CD70 expression has been reported in some solid cancers and implicated in tumor escape from immunosurveillance. In this study, expression of CD70 and CD27 was analyzed in osteosarcoma cell lines and tumor specimens. CD70 protein was expressed on most osteosarcoma cell lines (5/7) and patient-derived primary osteosarcoma cultures (4/6) as measured by flow cytometry. In contrast, CD70 was detected on few Ewing sarcoma cell lines (5/15) and was virtually absent from neuroblastoma (1/7) and rhabdomyosarcoma cell lines (0/5). CD70(+) primary cultures were derived from CD70(+) osteosarcoma lesions. CD70 expression in osteosarcoma cryosections was heterogeneous, restricted to tumor cells and not attributed to infiltrating CD3(+) T cells as assessed by immunohistochemistry/immunofluorescence. CD70 was detected in primary (1/5) but also recurrent (2/4) and metastatic (1/3) tumors. CD27, the receptor for CD70, was neither detected on tumor cells nor on T cells in CD70(+) or CD70(-) tumors, suggesting that CD70 on tumor cells is not involved in CD27-dependent tumor-immune cell interactions in osteosarcoma. CD70 gene expression in diagnostic biopsies of osteosarcoma patients did not correlate with the occurrence of metastasis and survival (n = 70). Our data illustrate that CD70 is expressed in a subset of osteosarcoma patients. In patients with CD70(+) tumors, CD70 may represent a novel candidate for antibody-based targeted immunotherapy.
RESUMO
Bone and soft tissue sarcomas are a group of rare malignant tumours with major histological and anatomical varieties. In a metastatic setting, sarcomas have a poor prognosis due to limited response rates to chemotherapy. Radioligand therapy targeting prostate-specific membrane antigen (PSMA) may offer a new perspective. PSMA is a type II transmembrane glycoprotein which is present in all prostatic tissue and overexpressed in prostate cancer. Despite the name, PSMA is not prostate-specific. PSMA expression is also found in a multitude of non-prostatic diseases including a subgroup of sarcomas, mostly in its neovascular endothelial cells. On PET/CT imaging, multiple sarcomas have also shown intense PSMA-tracer accumulation. PSMA expression and PSMA-tracer uptake seem to be highest in patients with aggressive and advanced sarcomas, who are also in highest need of new therapeutic options. Although these results provide a good rationale for the future use of PSMA-targeted radioligand therapy in a selection of sarcoma patients, more research is needed to gain insight into optimal patient selection methods, PSMA-targeting antibodies and tracers, administered doses of radioligand therapy, and their efficacy and tolerability. In this review, mRNA expression of the FOLH1 gene which encodes PSMA, PSMA immunohistochemistry, PSMA-targeted imaging and PSMA-targeted therapy in sarcomas will be discussed.
Assuntos
Neoplasias da Próstata , Sarcoma , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Sarcoma/diagnóstico por imagem , Sarcoma/radioterapia , Antígeno Prostático Específico/metabolismo , Imagem MolecularRESUMO
Osteoblastoma is a locally aggressive tumour of bone. Until recently, its underlying genetic features were largely unknown. During the past two years, reports have demonstrated that acquired structural variations affect the transcription factor FOS in a high proportion of cases. These rearrangements modify the terminal exon of the gene and are believed to stabilise both the FOS transcript and the encoded protein, resulting in high expression levels. Here, we applied in-depth genetic analyses to a series of 29 osteoblastomas, including five classified as epithelioid osteoblastoma. We found recurrent homozygous deletions of the NF2 gene in three of the five epithelioid cases and in one conventional osteoblastoma. These events were mutually exclusive from FOS mutations. Structural variations were determined by deep whole genome sequencing and the number of FOS-rearranged cases was less than previously reported (10/23, 43%). One conventional osteoblastoma displayed a novel mechanism of FOS upregulation; bringing the entire FOS gene under the control of the WNT5A enhancer that is itself activated by FOS. Taken together, we show that NF2 loss characterises a subgroup of osteoblastomas, distinct from FOS-rearranged cases. Both NF2 and FOS are involved in regulating bone homeostasis, thereby providing a mechanistic link to the excessive bone growth of osteoblastoma.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Deleção de Genes , Rearranjo Gênico , Neurofibromina 2/genética , Osteoblastoma/genética , Proteínas Proto-Oncogênicas c-fos/genética , Adolescente , Adulto , Neoplasias Ósseas/patologia , Criança , Pré-Escolar , Elementos Facilitadores Genéticos , Células Epitelioides/patologia , Europa (Continente) , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Osteoblastoma/patologia , Osteogênese , Fenótipo , Proteína Wnt-5a/genética , Adulto JovemRESUMO
Synovial sarcoma expresses multiple cancer testis antigens that could potentially be targeted by T-cell receptor (TCR) gene therapy. In this study we investigated whether PRAME-TCR-gene therapy could be an effective treatment for synovial sarcoma by investigating the potential of PRAME-specific T-cells to recognize sarcoma cells and by evaluating the expression patterns of PRAME and HLA class I (HLA-I) in synovial sarcoma tumor samples. All PRAME expressing sarcoma cell lines, including 2 primary synovial sarcoma cell cultures (passage < 3), were efficiently recognized by PRAME-specific T-cells. mRNA FISH demonstrated that PRAME was expressed in all synovial sarcoma samples, mostly in an homogeneous pattern. Immunohistochemistry demonstrated low HLA-I baseline expression in synovial sarcoma, but its expression was elevated in specific areas of the tumors, especially in biphasic components of biphasic synovial sarcoma. In 5/11 biphasic synovial sarcoma patients and in 1/17 monophasic synovial sarcoma patients, elevated HLA-I on tumor cells was correlated with infiltration of T-cells in these specific areas. In conclusion, low-baseline expression of HLA-I in synovial sarcoma is elevated in biphasic areas and in areas with densely infiltrating T-cells, which, in combination with homogeneous and high PRAME expression, makes synovial sarcoma potentially a suitable candidate for PRAME-specific TCR-gene therapy.
RESUMO
Fibrous dysplasia (FD) is a rare bone disorder caused by mutations of the GNAS gene, which are also identified in malignancies. We explored the potential relationship between breast cancer and fibrous dysplasia in two fibrous dysplasia cohorts from the Netherlands and the United States. Data on fibrous dysplasia and breast cancer diagnosis were retrieved from hospital records of 134 (Netherlands) and 121 (US) female patients. Results were validated with breast cancer data of 645 female fibrous dysplasia patients from the Dutch Pathology Registry (PALGA). Standardized morbidity ratios for breast cancer were estimated with data from Dutch and US general population registries. GNAS mutation was analyzed in 9 available breast cancer specimens. A combined total of 15 patients (6 polyostotic, 9 McCune-Albright Syndrome) had breast cancer (87% thoracic localizations). In the Netherlands, a breast cancer incidence rate of 7.5% at median age of 46 years was validated in PALGA (6.5% at age 51 years). Breast cancer risk was 3.4-fold increased (95% confidence interval [CI] 1.6-5.9) compared with the Dutch general population; OR 13.2-fold (95% CI 6.2-22.8) in thoracic disease. In the US cohort, breast cancer incidence rate was 4.5% at a median age of 36 years. Breast cancer risk was 3.9-fold increased (95% CI 1.2-8.2) compared with the general population; 5.7-fold (95% CI 1.4-13.0) in thoracic disease. GNAS mutation was positive in 4 breast cancer specimens (44%). Risk of breast cancer is increased at a younger age, particularly in polyostotic FD, suggesting that screening for breast cancer should be considered in this particular group at a younger age than currently advocated by national guidelines. © 2017 American Society for Bone and Mineral Research.
Assuntos
Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Displasia Fibrosa Poliostótica/complicações , Adolescente , Adulto , Fatores Etários , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Prevalência , Estados Unidos/epidemiologia , Adulto JovemRESUMO
BACKGROUND: Activation of the insulin-like growth factor 1 (IGF-1) pathway is involved in cell growth and proliferation and is associated with tumorigenesis, tumor progression, and therapy resistance in solid tumors. We examined whether variability in serum levels of IGF-1, IGF-2, and IGF-binding protein 3 (IGF-BP3) can predict event-free survival (EFS) and overall survival (OS) in Ewing sarcoma patients treated with chemotherapy. PATIENTS AND METHODS: Serum levels of IGF-1, IGF-2, and IGF-BP3 of 22 patients with localized or metastasized Ewing sarcoma treated with six cycles of vincristine/ifosfamide/doxorubicin/etoposide (VIDE) chemotherapy were recorded. Baseline levels were compared with presixth cycle levels using paired t-tests and were tested for associations with EFS and OS. Continuous variables were dichotomized according to the Contal and O'Quigley procedure. Survival analyses were performed using Cox regression analysis. RESULTS: High baseline IGF-1 and IGF-BP3 serum levels were associated with EFS (hazard ratio [HR] 0.075, 95% confidence interval [CI] 0.009-0.602 and HR 0.090, 95% CI 0.011-0.712, respectively) in univariate and multivariate analyses (HR 0.063, 95% CI 0.007-0.590 and HR 0.057, 95% CI 0.005-0.585, respectively). OS was improved, but this was not statistically significant. IGF-BP3 and IGF-2 serum levels increased during treatment with VIDE chemotherapy (P=0.055 and P=0.023, respectively). CONCLUSION: High circulating serum levels of IGF-1 and IGF-BP3 and the molar ratio of IGF-1:IGF-BP3 serum levels were associated with improved EFS and a trend for improved OS in Ewing sarcoma patients treated with VIDE chemotherapy. These findings suggest the need for further investigation of the IGF-1 pathway as a biomarker of disease progression in patients with Ewing sarcoma.
RESUMO
The "Hypoxia Nantes 2016" organized its second conference dedicated to the field of hypoxia research. This conference focused on "the role of hypoxia under physiological conditions as well as in cancer" and took place in Nantes, France, in October 6-7, 2016. The main objective of this conference was to bring together a large group of scientists from different spheres of hypoxia. Recent advances were presented and discussed around different topics: genomics, physiology, musculoskeletal, stem cells, microenvironment and cancer, and oxidative stress. This review summarizes the major highlights of the meeting.
RESUMO
BACKGROUND: The majority of patients with chondrosarcoma of bone have an excellent overall survival after local therapy. However, in case of unresectable locally advanced or metastatic disease the outcome is poor and limited treatment options exist. Therefore we conducted a survey of clinical phase I or II trials and retrospective studies that described systemic therapy for chondrosarcoma patients. MATERIALS AND METHODS: Using PubMed, clinicaltrials.gov, the Cochrane controlled trial register and American Society of Clinical Oncology (ASCO) abstracts a literature survey was conducted. From the identified items, data were collected by a systematic analysis. We limited our search to semi-recent studies published between 2000 and 2013 to include modern drugs, imaging techniques and disease evaluations. RESULTS: A total of 31 studies were found which met the criteria: 9 phase I trials, 11 phase II and 8 retrospective studies. In these studies 855 chondrosarcoma patients were reported. The tested drugs were mostly non-cytotoxic, either alone or in combination with another non-cytotoxic agent or chemotherapy. Currently two phase I trials, one phase IB/II trial and three phase II trials are enrolling chondrosarcoma patients. CONCLUSION: Because chondrosarcoma of bone is an orphan disease it is difficult to conduct clinical trials. The meagre outcome data for locally advanced or metastatic patients indicate that new treatment options are needed. For the phase I trials it is difficult to draw conclusions because of the low numbers of chondrosarcoma patients enrolled, and at different dose levels. Some phase II trials show promising results which support further research. Retrospective studies are encouraged as they could add to the limited data available. Efforts to increase the number of studies for this orphan disease are urgently needed.
RESUMO
BACKGROUND: DNA methylation has been recognized as a key mechanism in cell differentiation. Various studies have compared tissues to characterize epigenetically regulated genomic regions, but due to differences in study design and focus there still is no consensus as to the annotation of genomic regions predominantly involved in tissue-specific methylation. We used a new algorithm to identify and annotate tissue-specific differentially methylated regions (tDMRs) from Illumina 450k chip data for four peripheral tissues (blood, saliva, buccal swabs and hair follicles) and six internal tissues (liver, muscle, pancreas, subcutaneous fat, omentum and spleen with matched blood samples). RESULTS: The majority of tDMRs, in both relative and absolute terms, occurred in CpG-poor regions. Further analysis revealed that these regions were associated with alternative transcription events (alternative first exons, mutually exclusive exons and cassette exons). Only a minority of tDMRs mapped to gene-body CpG islands (13%) or CpG islands shores (25%) suggesting a less prominent role for these regions than indicated previously. Implementation of ENCODE annotations showed enrichment of tDMRs in DNase hypersensitive sites and transcription factor binding sites. Despite the predominance of tissue differences, inter-individual differences in DNA methylation in internal tissues were correlated with those for blood for a subset of CpG sites in a locus- and tissue-specific manner. CONCLUSIONS: We conclude that tDMRs preferentially occur in CpG-poor regions and are associated with alternative transcription. Furthermore, our data suggest the utility of creating an atlas cataloguing variably methylated regions in internal tissues that correlate to DNA methylation measured in easy accessible peripheral tissues.
RESUMO
BACKGROUND: Molecular genetic studies on rare tumour entities, such as bone tumours, often require the use of decalcified, formalin-fixed, paraffin-embedded tissue (dFFPE) samples. Regardless of which decalcification procedure is used, this introduces a vast breakdown of DNA that precludes the possibility of further molecular genetic testing. We set out to establish a robust protocol that would overcome these intrinsic hurdles for bone tumour research. FINDINGS: The goal of our study was to establish a protocol, using a modified DNA isolation procedure and quality controls, to select decalcified samples suitable for array-CGH testing. Archival paraffin blocks were obtained from 9 different pathology departments throughout Europe, using different fixation, embedding and decalcification procedures, in order to preclude a bias for certain lab protocols. Isolated DNA samples were subjected to direct chemical labelling and enzymatic labelling systems and were hybridised on a high resolution oligonucleotide chip containing 44,000 reporter elements.Genomic alterations (gains and losses) were readily detected in most of the samples analysed. For example, both homozygous deletions of 0.6 Mb and high level of amplifications of 0.7 Mb were identified. CONCLUSIONS: We established a robust protocol for molecular genetic testing of dFFPE derived DNA, irrespective of fixation, decalcification or sample type used. This approach may greatly facilitate further genetic testing on rare tumour entities where archival decalcified, formalin fixed samples are the only source.
RESUMO
BACKGROUND: The diagnostic entity malignant fibrous histiocytoma (MFH) of bone is, like its soft tissue counterpart, likely to be a misnomer, encompassing a variety of poorly differentiated sarcomas. When reviewing a series of 57 so-called MFH of bone within the framework of the EuroBoNeT consortium according to up-to-date criteria and ancillary immunohistochemistry, a fourth of all tumors were reclassified and subtyped. METHODS: In the present study, the cytogenetic data on 11 of these tumors (three myoepithelioma-like sarcomas, two leiomyosarcomas, one undifferentiated pleomorphic sarcoma with incomplete myogenic differentiation, two undifferentiated pleomorphic sarcomas, one osteosarcoma, one spindle cell sarcoma, and one unclassifiable biphasic sarcoma) are presented. RESULTS: All tumors were high-grade lesions and showed very complex karyotypes. Neither the overall pattern (ploidy level, degree of complexity) nor specific cytogenetic features distinguished any of the subtypes. The subgroup of myoepithelioma-like sarcomas was further investigated with regard to the status of the EWSR1 and FUS loci; however, no rearrangement was found. Nor was any particular aberration that could differentiate any of the subtypes from osteosarcomas detected. CONCLUSIONS: chromosome banding analysis is unlikely to reveal potential genotype-phenotype correlations between morphologic subtypes among so-called MFH of bone.
RESUMO
Multiple Osteochondromas is an autosomal dominant disorder characterised by the presence of multiple osteochondromas and a variety of orthopaedic deformities. Two genes causative of Multiple Osteochondromas, Exostosin-1 (EXT1) and Exostosin-2 (EXT2), have been identified, which act as tumour suppressor genes. Osteochondroma can progress towards its malignant counterpart, secondary peripheral chondrosarcoma and therefore adequate follow-up of Multiple Osteochondroma patients is important in order to detect malignant transformation early.This review summarizes the considerable recent basic scientific and clinical understanding resulting in a multi-step genetic model for peripheral cartilaginous tumorigenesis. This enabled us to suggest guidelines for clinical management of Multiple Osteochondroma patients. When a patient is suspected to have Multiple Osteochondroma, the radiologic documentation, histology and patient history have to be carefully reviewed, preferably by experts and if indicated for Multiple Osteochondromas, peripheral blood of the patient can be screened for germline mutations in either EXT1 or EXT2. After the Multiple Osteochondroma diagnosis is established and all tumours are identified, a regular follow-up including plain radiographs and base-line bone scan are recommended.