Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(7): 3423-3442, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33464384

RESUMO

Obesity has been linked to an increased risk of and a worse prognosis for several types of cancer. A number of interrelated mediators contribute to obesity's pro-tumor effects, including chronic adipose inflammation and other perturbations of immune cell development and function. Here, we review studies examining the impact of obesity-induced immune dysfunction on cancer risk and progression. While the role of adipose tissue inflammation in obesity-associated cancer risk has been well characterized, the effects of obesity on immune cell infiltration and activity within the tumor microenvironment are not well studied. In this review, we aim to highlight the impact of both adipose-mediated inflammatory signaling and intratumoral immunosuppressive signaling in obesity-induced cancer risk, progression, and metastasis.


Assuntos
Doenças do Sistema Imunitário/patologia , Imunidade Celular/imunologia , Inflamação/patologia , Neoplasias/patologia , Obesidade/complicações , Microambiente Tumoral/imunologia , Animais , Progressão da Doença , Humanos , Doenças do Sistema Imunitário/etiologia , Inflamação/etiologia , Metástase Neoplásica , Neoplasias/etiologia , Fatores de Risco
2.
Breast Cancer Res Treat ; 173(3): 545-557, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30367332

RESUMO

PURPOSE: Exposure to the polyphenolic plant lignan secoisolariciresinol diglucoside (SDG) and its metabolite enterolactone (ENL) has been associated with reduced breast cancer progression, particularly for estrogen receptor alpha (ERα)-negative disease, and decreased preclinical mammary tumor growth. However, while preclinical studies have established that SDG and ENL affect measures of progression in models of triple-negative breast cancer (TNBC, a subset of ERα-negative disease), the molecular mechanisms underlying these effects remain unclear. METHODS: C57BL/6 mice were fed a control diet (control, 10% kcal from fat) or control diet + SDG (SDG, 100 mg/kg diet) for 8 weeks, then orthotopically injected with syngeneic E0771 mammary tumor cells (a model of TNBC); tumor growth was monitored for 3 weeks. The role of reduced NF-κB signaling in SDG's anti-tumor effects was explored in vitro via treatment with the bioactive SDG metabolite ENL. In addition to the murine E0771 cells, the in vitro studies utilized MDA-MB-231 and MCF-7 cells, two human cell lines which model the triple-negative and luminal A breast cancer subtypes, respectively. RESULTS: SDG supplementation in the mice significantly reduced tumor volume and expression of phospho-p65 and NF-κB target genes (P < 0.05). Markers of macrophage infiltration were decreased in the distal-to-tumor mammary fat pad of mice supplemented with SDG relative to control mice (P < 0.05). In vitro, ENL treatment inhibited viability, survival, and NF-κB activity and target gene expression in E0771, MDA-MB-231, and MCF-7 cells (P < 0.05). Overexpression of Rela attenuated ENL's inhibition of E0771 cell viability and survival. CONCLUSIONS: SDG reduces tumor growth in the E0771 model of TNBC, likely via a mechanism involving inhibition of NF-κB activity. SDG could serve as a practical and effective adjuvant treatment to reduce recurrence, but greater understanding of its effects is needed to inform the development of more targeted recommendations for its use.


Assuntos
Anti-Inflamatórios/farmacologia , Butileno Glicóis/farmacologia , Linho/química , Glucosídeos/farmacologia , Neoplasias Mamárias Animais/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/sangue , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Biomarcadores , Butileno Glicóis/administração & dosagem , Butileno Glicóis/química , Linhagem Celular Tumoral , Sobrevivência Celular , Citocinas/sangue , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Glucosídeos/administração & dosagem , Glucosídeos/química , Imuno-Histoquímica , Lignanas/sangue , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos
3.
Mol Carcinog ; 57(3): 393-407, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29197120

RESUMO

Adipose tissue dysregulation, a hallmark of obesity, contributes to a chronic state of low-grade inflammation and is associated with increased risk and progression of several breast cancer subtypes, including claudin-low breast tumors. Unfortunately, mechanistic targets for breaking the links between obesity-associated adipose tissue dysfunction, inflammation, and claudin-low breast cancer growth have not been elucidated. Ovariectomized female C57BL/6 mice were randomized (n = 15/group) to receive a control diet, a diet-induced obesity (DIO) diet, or a DIO + resveratrol (0.5% wt/wt) diet. Mice consumed these diets ad libitum throughout study and after 6 weeks were orthotopically injected with M-Wnt murine mammary tumor cells, a model of estrogen receptor (ER)-negative claudin-low breast cancer. Compared with controls, DIO mice displayed adipose dysregulation and metabolic perturbations including increased mammary adipocyte size, cyclooxygenase-2 (COX-2) expression, inflammatory eicosanoid levels, macrophage infiltration, and prevalence of crown-like structures (CLS). DIO mice (relative to controls) also had increased systemic inflammatory cytokines and decreased adipocyte expression of peroxisome proliferator-activated receptor gamma (PPARγ) and other adipogenesis-regulating genes. Supplementing the DIO diet with resveratrol prevented obesity-associated increases in mammary tumor growth, mammary adipocyte hypertrophy, COX-2 expression, macrophage infiltration, CLS prevalence, and serum cytokines. Resveratrol also offset the obesity-associated downregulation of adipocyte PPARγ and other adipogenesis genes in DIO mice. Our findings suggest that resveratrol may inhibit obesity-associated inflammation and claudin-low breast cancer growth by inhibiting adipocyte hypertrophy and associated adipose tissue dysregulation that typically accompanies obesity.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Obesidade/tratamento farmacológico , Resveratrol/uso terapêutico , Tecido Adiposo/fisiopatologia , Animais , Neoplasias da Mama/complicações , Neoplasias da Mama/fisiopatologia , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/fisiopatologia , Pós-Menopausa
4.
Artigo em Inglês | MEDLINE | ID: mdl-27448716

RESUMO

Today's world population has an unprecedented risk of dying from the consequences of being overweight and obese. Chronic diseases such as cardiovascular disease, type 2 diabetes, and cancer are often accelerated because of excessive adiposity. Various biological mechanisms are implicated in the obesity-cancer link, particularly local and systemic inflammation as well as altered growth factor signaling pathways. In order to combat obesity-induced inflammation and the resulting increases in cancer risk and progression, the identification of safe and effective mechanism-based interventions is imperative. Notably, long chain omega-3 polyunsaturated fatty acids (PUFAs) modulate the secretion of pro-inflammatory cytokines, prostaglandins and other inflammatory mediators, restore insulin sensitivity, and can prevent or delay tumorigenesis. Delineating the precise mechanisms by which omega-3 PUFAs suppress obesity-induced inflammation will help identify promising key mechanistic targets and intervention strategies to break the obesity-cancer link.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Neoplasias/complicações , Obesidade/complicações , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/química , Suplementos Nutricionais/efeitos adversos , Ácidos Graxos Ômega-3/efeitos adversos , Ácidos Graxos Ômega-3/química , Humanos , Neoplasias/prevenção & controle , Risco
5.
Breast Cancer Res Treat ; 149(1): 49-57, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25476497

RESUMO

Obesity is associated with a worse breast cancer prognosis, particularly in estrogen receptor alpha (ERα) positive, postmenopausal patients. We hypothesized that this is mediated in part by an elevation in breast cancer cell cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production that results in greater local pre-adipocyte aromatase expression. We utilized an in vitro model of the obese patient's tumor microenvironment in which cultured MCF-7 breast cancer cells and pre-adipocytes were exposed to pooled serum from obese (OB; BMI ≥ 30.0 kg/m(2)) or normal weight (N; BMI 18.5-24.9 kg/m(2)) postmenopausal women. Exposure to OB versus N sera significantly increased MCF-7 cell COX-2 expression and PGE2 production. Pre-adipocyte aromatase expression was 89 % greater following culture in conditioned media (CM) from MCF-7 cells exposed to OB versus N sera (OB-CM and N-CM, respectively), a difference nullified by MCF-7 cell treatment with the COX-2 inhibitor celecoxib. Previous analysis of the sera revealed significantly higher interleukin-6 (IL-6) concentrations in the OB versus N samples. Depletion of IL-6 from the sera neutralized the difference in pre-adipocyte aromatase expression stimulated by OB-CM versus N-CM. Finally, CM from pre-adipocyte/MCF-7 cell co-cultures exposed to OB sera stimulated greater MCF-7 and T47D breast cancer cell ERα activity and proliferation in comparison to N sera. This study indicates that obesity-associated systemic IL-6 indirectly enhances pre-adipocyte aromatase expression via increased breast cancer cell PGE2 production. Investigation regarding the efficacy of a COX-2 inhibitor/aromatase inhibitor combination therapy in the obese postmenopausal patient population is warranted.


Assuntos
Aromatase/biossíntese , Neoplasias da Mama/genética , Dinoprostona/biossíntese , Interleucina-6/genética , Obesidade/genética , Adipócitos/enzimologia , Inibidores da Aromatase/administração & dosagem , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/biossíntese , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/imunologia , Células MCF-7 , Obesidade/complicações , Obesidade/patologia
6.
Nutr Cancer ; 66(7): 1179-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25264717

RESUMO

Obesity is the leading preventable comorbidity associated with increased prostate cancer-related recurrence and mortality. Epidemiological and clinical studies indicate that a body mass index >30 is associated with increased oxidative DNA damage within the prostate gland and increased prostate cancer-related mortality. Here we provide evidence that obesity promotes worse clinical outcome through induction of metabolic abnormalities known to promote genotoxic stress. We have previously reported that blood serum derived from obese mice may enhance the proliferative and invasive potential of human prostate cancer cell lines ex vivo. Here we show that a 1-h exposure of LNCaP or PacMetUT1 prostate cancer cell lines and nonmalignant RWPE-1 prostate epithelial cells to 2% serum from obese mice induces markers of aerobic glycolysis relative to those exposed to serum from nonobese mice. This metabolic change was correlated with accumulation of reactive oxygen species (ROS) and increased frequency of DNA double-strand breaks. Interestingly, N-tert-Butylhydroxylamine, an antioxidant, significantly suppressed markers of aerobic glycolysis in the cells exposed to the blood serum of obese mice, suggesting that ROS contributes to a metabolic shift toward aerobic glycolysis. Here we describe obesity-induced changes in key metabolic markers that impact prostate cancer cell progression and explore the role of antioxidants in ameliorating these effects.


Assuntos
Glicólise , Obesidade/fisiopatologia , Neoplasias da Próstata/fisiopatologia , Animais , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Progressão da Doença , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Hidroxilaminas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Estresse Oxidativo/efeitos dos fármacos , Piruvato Quinase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes
7.
Breast Cancer Res ; 15(4): R59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23880059

RESUMO

INTRODUCTION: Epidemiological and clinical studies indicate that obesity is associated with a worse postmenopausal breast cancer prognosis and an increased risk of endocrine therapy resistance. However, the mechanisms mediating these effects remain poorly understood. Here we investigate the molecular pathways by which obesity-associated circulating factors in the blood enhance estrogen receptor alpha (ERα) positive breast cancer cell viability and growth. METHODS: Blood serum was collected from postmenopausal breast cancer patients and pooled by body mass index (BMI) category (Control: 18.5 to 24.9 kg/m²; Obese: ≥30.0 kg/m²). The effects of patient sera on MCF-7 and T47D breast cancer cell viability and growth were examined by MTT and colony formation assays, respectively. Insulin-like growth factor receptor 1(IGF-1R), Akt, and ERK1/2 activation and genomic ERα activity were assessed to determine their possible contribution to obese patient sera-induced cell viability and growth. To further define the relative contribution of these signaling pathways, cells grown in patient sera were treated with various combinations of ERα, PI3K/Akt and MAPK targeted therapies. Comparisons between cells exposed to different experimental conditions were made using one-way analysis of variance (ANOVA) and Student's t test. RESULTS: Cells grown in media supplemented with obese patient sera displayed greater cell viability and growth as well as IGF-1R, Akt and ERK1/2 activation relative to control sera. Despite the lack of a significant difference in genomic ERα activity following growth in obese versus control patient sera, we observed a dramatic reduction in cell viability and growth after concurrent inhibition of the ERα and PI3K/Akt signaling pathways. Further, we demonstrated that ERα inhibition was sufficient to attenuate obese serum-induced Akt and ERK1/2 activation. Together, these data suggest that obesity promotes greater ERα positive breast cancer cell viability and growth through enhanced crosstalk between nongenomic ERα signaling and the PI3K/Akt and MAPK pathways. CONCLUSIONS: Circulating factors in the serum of obese postmenopausal women stimulate ERα positive breast cancer cell viability and growth by facilitating non-genomic ERα crosstalk with the PI3K/Akt and MAPK signaling pathways. These findings provide valuable insight into one mechanism by which obesity may promote ERα positive postmenopausal breast cancer progression and endocrine therapy resistance.


Assuntos
Neoplasias da Mama/complicações , Neoplasias da Mama/metabolismo , Sistema de Sinalização das MAP Quinases , Obesidade/complicações , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Cross-Talk , Receptores de Estrogênio/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Receptor IGF Tipo 1/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Fatores de Risco
8.
JCI Insight ; 8(19)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698918

RESUMO

Obesity promotes triple-negative breast cancer (TNBC), and effective interventions are urgently needed to break the obesity-TNBC link. Epidemiologic studies indicate that bariatric surgery reduces TNBC risk, while evidence is limited or conflicted for weight loss via low-fat diet (LFD) or calorie restriction (CR). Using a murine model of obesity-driven TNBC, we compared the antitumor effects of vertical sleeve gastrectomy (VSG) with LFD, chronic CR, and intermittent CR. Each intervention generated weight and fat loss and suppressed tumor growth relative to obese mice (greatest suppression with CR). VSG and CR regimens exerted both similar and unique effects, as assessed using multiomics approaches, in reversing obesity-associated transcript, epigenetics, secretome, and microbiota changes and restoring antitumor immunity. Thus, in a murine model of TNBC, bariatric surgery and CR each reverse obesity-driven tumor growth via shared and distinct antitumor mechanisms, and CR is superior to VSG in reversing obesity's procancer effects.


Assuntos
Cirurgia Bariátrica , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Restrição Calórica , Modelos Animais de Doenças , Obesidade/complicações , Obesidade/cirurgia
9.
Cancer Prev Res (Phila) ; 15(9): 581-594, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35696725

RESUMO

The reversibility of the procancer effects of obesity was interrogated in formerly obese C57BL/6 mice that lost weight via a nonrestricted low-fat diet (LFD) or 3 distinct calorie-restricted (CR) regimens (low-fat CR, Mediterranean-style CR, or intermittent CR). These mice, along with continuously obese mice and lean control mice, were orthotopically injected with E0771 cells, a mouse model of triple-negative breast cancer. Tumor weight, systemic cytokines, and incidence of lung metastases were elevated in the continuously obese and nonrestricted LFD mice relative to the 3 CR groups. Gene expression differed between the obese and all CR groups, but not the nonrestricted LFD group, for numerous tumoral genes associated with epithelial-to-mesenchymal transition as well as several genes in the normal mammary tissue associated with hypoxia, reactive oxygen species production, and p53 signaling. A high degree of concordance existed between differentially expressed mammary tissue genes from obese versus all CR mice and a microarray dataset from overweight/obese women randomized to either no intervention or a CR diet. Assessment of differentially methylated regions in mouse mammary tissues revealed that obesity, relative to the 4 weight loss groups, was associated with significant DNA hypermethylation. However, the anticancer effects of the CR interventions were independent of their ability to reverse obesity-associated mammary epigenetic reprogramming. Taken together, these preclinical data showing that the procancer effects of obesity are reversible by various forms of CR diets strongly support translational exploration of restricted dietary patterns for reducing the burden of obesity-associated cancers. PREVENTION RELEVANCE: Obesity is an established risk and progression factor for triple-negative breast cancer (TNBC). Given rising global rates of obesity and TNBC, strategies to reduce the burden of obesity-driven TNBC are urgently needed. We report the genomic, epigenetic, and procancer effects of obesity are reversible by various calorie restriction regimens.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Epigênese Genética , Feminino , Genômica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Redução de Peso
10.
Cancer Prev Res (Phila) ; 15(8): 481-495, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653548

RESUMO

Obesity is associated with an increased risk of colon cancer. Our current study examines whether weight loss and/or treatment with the NSAID sulindac suppresses the protumor effects of obesity in a mouse model of colon cancer. Azoxymethane-treated male FVB/N mice were fed a low-fat diet (LFD) or high-fat diet (HFD) for 15 weeks, then HFD mice were randomized to remain on HFD (obese) or switch to LFD [formerly obese (FOb-LFD)]. Within the control (LFD), obese, and FOb-LFD groups, half the mice started sulindac treatment (140 ppm in the diet). All mice were euthanized 7 weeks later. FOb-LFD mice had intermediate body weight levels, lower than obese but higher than control (P < 0.05). Sulindac did not affect body weight. Obese mice had greater tumor multiplicity and burden than all other groups (P < 0.05). Transcriptomic profiling indicated that weight loss and sulindac each modulate the expression of tumor genes related to invasion and may promote a more antitumor immune landscape. Furthermore, the fecal microbes Coprobacillus, Prevotella, and Akkermansia muciniphila were positively correlated with tumor multiplicity and reduced by sulindac in obese mice. Coprobacillus abundance was also decreased in FOb-LFD mice. In sum, weight loss and sulindac treatment, alone and in combination, reversed the effects of chronic obesity on colon tumor multiplicity and burden. Our findings suggest that an investigation regarding the effects of NSAID treatment on colon cancer risk and/or progression in obese individuals is warranted, particularly for those unable to achieve moderate weight loss. PREVENTION RELEVANCE: Obesity is a colon cancer risk and/or progression factor, but the underlying mechanisms are incompletely understood. Herein we demonstrate that obesity enhances murine colon carcinogenesis and expression of numerous tumoral procancer and immunosuppressive pathways. Moreover, we establish that weight loss via LFD and/or the NSAID sulindac mitigate procancer effects of obesity.


Assuntos
Neoplasias do Colo , Microbiota , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Peso Corporal , Neoplasias do Colo/etiologia , Neoplasias do Colo/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Sulindaco/farmacologia , Transcriptoma , Redução de Peso
11.
Front Oncol ; 12: 1031174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686775

RESUMO

Introduction: Advanced age and obesity are independent risk and progression factors for triple negative breast cancer (TNBC), which presents significant public health concerns for the aging population and its increasing burden of obesity. Due to parallels between advanced age- and obesityrelated biology, particularly adipose inflammation, we hypothesized that advanced age and obesity each accelerate mammary tumor growth through convergent, and likely interactive, mechanisms. Methods: To test this hypothesis, we orthotopically transplanted murine syngeneic TNBC cells into the mammary glands of young normoweight control (7 months), young diet-induced obese (DIO), aged normoweight control (17 months), and aged DIO female C57BL/6J mice. Results: Here we report accelerated tumor growth in aged control and young DIO mice, compared with young controls. Transcriptional analyses revealed, with a few exceptions, overlapping patterns of mammary tumor inflammation and tumor immunosuppression in aged control mice and young DIO mice, relative to young controls. Moreover, aged control and young DIO tumors, compared with young controls, had reduced abundance ofcytotoxic CD8 T cells. Finally, DIO in advanced age exacerbated mammary tumor growth, inflammation and tumor immunosuppression. Discussion: These findings demonstrate commonalities in the mechanisms driving TNBC in aged and obese mice, relative to young normoweight controls. Moreover, we found that advanced age and DIO interact to accelerate mammary tumor progression. Given the US population is getting older and more obese, age- and obesity-related biological differences will need to be considered when developing mechanism-based strategies for preventing or controlling breast cancer.

12.
Cancer Prev Res (Phila) ; 13(10): 817-828, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32655010

RESUMO

Obesity and obesity-driven cancer rates are continuing to rise worldwide. We hypothesize that adipocyte-colonocyte interactions are a key driver of obesity-associated cancers. To understand the clinical relevance of visceral adipose tissue in advancing tumor growth, we analyzed paired tumor-adjacent visceral adipose, normal mucosa, and colorectal tumor tissues as well as presurgery blood samples from patients with sporadic colorectal cancer. We report that high peroxisome proliferator-activated receptor gamma (PPARG) visceral adipose tissue expression is associated with glycoprotein VI (GPVI) signaling-the major signaling receptor for collagen-as well as fibrosis and adipogenesis pathway signaling in colorectal tumors. These associations were supported by correlations between PPARG visceral adipose tissue expression and circulating levels of plasma 4-hydroxyproline and serum intercellular adhesion molecule 1 (ICAM1), as well as gene set enrichment analysis and joint gene-metabolite pathway results integration that yielded significant enrichment of genes defining epithelial-to-mesenchymal transition-as in fibrosis and metastasis-and genes involved in glycolytic metabolism, confirmed this association. We also reveal that elevated prostaglandin-endoperoxide synthase 2 (PTGS2) colorectal tumor expression is associated with a fibrotic signature in adipose-tumor crosstalk via GPVI signaling and dendritic cell maturation in visceral adipose tissue. Systemic metabolite and biomarker profiling confirmed that high PTGS2 expression in colorectal tumors is significantly associated with higher concentrations of serum amyloid A and glycine, and lower concentrations of sphingomyelin, in patients with colorectal cancer. This multi-omics study suggests that adipose-tumor crosstalk in patients with colorectal cancer is a critical microenvironment interaction that could be therapeutically targeted.See related spotlight by Colacino et al., p. 803.


Assuntos
Tecido Adiposo , Neoplasias Colorretais , Carcinogênese , Humanos , Gordura Intra-Abdominal , Obesidade , Microambiente Tumoral
13.
J Acad Nutr Diet ; 118(4): 652-667, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29102513

RESUMO

Prevalence of obesity, an established risk factor for many cancers, has increased dramatically over the past 50 years in the United States and across the globe. Relative to normoweight cancer patients, obese cancer patients often have poorer prognoses, resistance to chemotherapies, and are more likely to develop distant metastases. Recent progress on elucidating the mechanisms underlying the obesity-cancer connection suggests that obesity exerts pleomorphic effects on pathways related to tumor development and progression and, thus, there are multiple opportunities for primary prevention and treatment of obesity-related cancers. Obesity-associated alterations, including systemic metabolism, adipose inflammation, growth factor signaling, and angiogenesis, are emerging as primary drivers of obesity-associated cancer development and progression. These obesity-associated host factors interact with the intrinsic molecular characteristics of cancer cells, facilitating several of the hallmarks of cancer. Each is considered in the context of potential preventive and therapeutic strategies to reduce the burden of obesity-related cancers. In addition, this review focuses on emerging mechanisms behind the obesity-cancer link, as well as relevant dietary interventions, including calorie restriction, intermittent fasting, low-fat diet, and ketogenic diet, that are being implemented in preclinical and clinical trials, with the ultimate goal of reducing incidence and progression of obesity-related cancers.


Assuntos
Dieta/métodos , Neoplasias/prevenção & controle , Obesidade/dietoterapia , Carcinogênese/metabolismo , Progressão da Doença , Humanos , Incidência , Neoplasias/epidemiologia , Neoplasias/etiologia , Obesidade/complicações , Obesidade/metabolismo , Fatores de Risco
14.
Mol Cancer Res ; 16(5): 869-879, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29453319

RESUMO

Obesity is associated with poor prognosis in triple-negative breast cancer (TNBC). Preclinical models of TNBC were used to test the hypothesis that increased leptin signaling drives obesity-associated TNBC development by promoting cancer stem cell (CSC) enrichment and/or epithelial-to-mesenchymal transition (EMT). MMTV-Wnt-1 transgenic mice, which develop spontaneous basal-like, triple-negative mammary tumors, received either a control diet (10% kcal from fat) or a diet-induced obesity regimen (DIO, 60% kcal from fat) for up to 42 weeks (n = 15/group). Mice were monitored for tumor development and euthanized when tumor diameter reached 1.5 cm. Tumoral gene expression was assessed via RNA sequencing (RNA-seq). DIO mice had greater body weight and percent body fat at termination than controls. DIO mice, versus controls, demonstrated reduced survival, increased systemic metabolic and inflammatory perturbations, upregulated tumoral CSC/EMT gene signature, elevated tumoral aldehyde dehydrogenase activity (a CSC marker), and greater leptin signaling. In cell culture experiments using TNBC cells (murine: E-Wnt and M-Wnt; human: MDA-MB-231), leptin enhanced mammosphere formation, and media supplemented with serum from DIO versus control mice increased cell viability, migration, invasion, and CSC- and EMT-related gene expression, including Foxc2, Twist2, Vim, Akt3, and Sox2 In E-Wnt cells, knockdown of leptin receptor ablated these procancer effects induced by DIO mouse serum. These findings indicate that increased leptin signaling is causally linked to obesity-associated TNBC development by promoting CSC enrichment and EMT.Implications: Leptin-associated signals impacting CSC and EMT may provide new targets and intervention strategies for decreasing TNBC burden in obese women. Mol Cancer Res; 16(5); 869-79. ©2018 AACR.


Assuntos
Leptina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Obesidade/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/patologia
15.
Cancer Prev Res (Phila) ; 10(9): 494-506, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28864539

RESUMO

Obesity and its associated metabolic dysregulation are established risk factors for many cancers. However, the biologic mechanisms underlying this relationship remain incompletely understood. Given the rising rates of both obesity and cancer worldwide, and the challenges for many people to lose excess adipose tissue, a systematic approach to identify potential molecular and metabolic targets is needed to develop effective mechanism-based strategies for the prevention and control of obesity-driven cancer. Epidemiologic, clinical, and preclinical data suggest that within the growth-promoting, proinflammatory microenvironment accompanying obesity, crosstalk between adipose tissue (comprised of adipocytes, macrophages and other cells) and cancer-prone cells may occur via obesity-associated hormones, cytokines, and other mediators that have been linked to increased cancer risk and/or progression. We report here a systematic review on the direct "crosstalk" between adipose tissue and carcinomas in humans. We identified 4,641 articles with n = 20 human clinical studies, which are summarized as: (i) breast (n = 7); (ii) colorectal (n = 4); (iii) esophageal (n = 2); (iv) esophageal/colorectal (n = 1); (v) endometrial (n = 1); (vi) prostate (n = 4); and (vii) ear-nose-throat (ENT) cancer (n = 1). Findings from these clinical studies reinforce preclinical data and suggest organ-dependent crosstalk between adipose tissue and carcinomas via VEGF, IL6, TNFα, and other mechanisms. Moreover, visceral white adipose tissue plays a more central role, as it is more bioenergetically active and is associated with a more procancer secretome than subcutaneous adipose tissue. Efforts to eavesdrop and ultimately interfere with this cancer-enhancing crosstalk may lead to new targets and strategies for decreasing the burden of obesity-related cancers. Cancer Prev Res; 10(9); 494-506. ©2017 AACR.


Assuntos
Tecido Adiposo/metabolismo , Carcinoma/patologia , Citocinas/metabolismo , Inflamação/patologia , Obesidade/metabolismo , Microambiente Tumoral , Adipócitos/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/patologia , Carcinoma/metabolismo , Progressão da Doença , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Obesidade/complicações , Fatores de Risco , Transdução de Sinais
16.
Cancer Res ; 77(9): 2500-2511, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28373182

RESUMO

The association between obesity and breast cancer risk and prognosis is well established in estrogen receptor (ER)-positive disease but less clear in HER2-positive disease. Here, we report preclinical evidence suggesting weight maintenance through calorie restriction (CR) may limit risk of HER2-positive breast cancer. In female MMTV-HER2/neu transgenic mice, we found that ERα and ERß expression, mammary tumorigenesis, and survival are energy balance dependent in association with epigenetic reprogramming. Mice were randomized to receive a CR, overweight-inducing, or diet-induced obesity regimen (n = 27/group). Subsets of mice (n = 4/group/time point) were euthanized after 1, 3, and 5 months to characterize diet-dependent metabolic, transcriptional, and epigenetic perturbations. Remaining mice were followed up to 22 months. Relative to the overweight and diet-induced obesity regimens, CR decreased body weight, adiposity, and serum metabolic hormones as expected and also elicited an increase in mammary ERα and ERß expression. Increased DNA methylation accompanied this pattern, particularly at CpG dinucleotides located within binding or flanking regions for the transcriptional regulator CCCTC-binding factor of ESR1 and ESR2, consistent with sustained transcriptional activation of ERα and ERß. Mammary expression of the DNA methylation enzyme DNMT1 was stable in CR mice but increased over time in overweight and diet-induced obesity mice, suggesting CR obviates epigenetic alterations concurrent with chronic excess energy intake. In the survival study, CR elicited a significant suppression in spontaneous mammary tumorigenesis. Overall, our findings suggest a mechanistic rationale to prevent or reverse excess body weight as a strategy to reduce HER2-positive breast cancer risk. Cancer Res; 77(9); 2500-11. ©2017 AACR.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Neoplasias Mamárias Animais/genética , Obesidade/genética , Animais , Neoplasias da Mama/fisiopatologia , Restrição Calórica , Carcinogênese/genética , Metilação de DNA/genética , Metabolismo Energético/genética , Epigênese Genética/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Mamárias Animais/etiologia , Neoplasias Mamárias Animais/fisiopatologia , Camundongos , Camundongos Transgênicos , Obesidade/complicações , Obesidade/fisiopatologia , Receptor ErbB-2/genética , Fatores de Risco
17.
Cancer Prev Res (Phila) ; 9(5): 339-48, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26869351

RESUMO

Using a murine model of basal-like breast cancer, we tested the hypothesis that chronic obesity, an established breast cancer risk and progression factor in women, induces mammary gland epigenetic reprogramming and increases mammary tumor growth. Moreover, we assessed whether the obesity-induced epigenetic and protumor effects are reversed by weight normalization. Ovariectomized female C57BL/6 mice were fed a control diet or diet-induced obesity (DIO) regimen for 17 weeks, resulting in a normal weight or obese phenotype, respectively. Mice on the DIO regimen were then randomized to continue the DIO diet or were switched to the control diet, resulting in formerly obese (FOb) mice with weights comparable with control mice. At week 24, all mice were orthotopically injected with MMTV-Wnt-1 mouse mammary tumor cells. Mean tumor volume, serum IL6 levels, expression of proinflammatory genes in the mammary fat pad, and mammary DNA methylation profiles were similar in DIO and FOb mice and higher than in controls. Many of the genes found to have obesity-associated hypermethylation in mice were also found to be hypermethylated in the normal breast tissue of obese versus nonobese human subjects, and nearly all of these concordant genes remained hypermethylated after significant weight loss in the FOb mice. Our findings suggest that weight normalization may not be sufficient to reverse the effects of chronic obesity on epigenetic reprogramming and inflammatory signals in the microenvironment that are associated with breast cancer progression. Cancer Prev Res; 9(5); 339-48. ©2016 AACR.


Assuntos
Epigênese Genética , Neoplasias Mamárias Experimentais/etiologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Obesidade/complicações , Animais , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Metilação de DNA/genética , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/complicações , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
18.
Curr Pharmacol Rep ; 1(5): 336-345, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26442202

RESUMO

Multiple studies have demonstrated that obesity is associated with a worse outcome for all breast cancer subtypes and that obese breast cancer patients do not respond as well as normal weight patients to aromatase inhibitor treatment and chemotherapy. While a number of mechanisms have been proposed to explain this link, recent studies have provided evidence that elevated local cyclooxygenase-2 (COX-2) expression and the resulting increase in prostaglandin E2 (PGE2) production may play an important role. COX-2 upregulation in breast tumors is associated with a poor prognosis, a connection generally attributed to PGE2's direct effects on apoptosis and invasion as well as its stimulation of pre-adipocyte aromatase expression and subsequent estrogen production. Research in this area has provided a strong foundation for the hypothesis that COX-2 signaling is involved in the obesity-breast cancer link, and further study regarding the role of COX-2 in this link is warranted.

19.
Horm Mol Biol Clin Investig ; 23(2): 47-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26167982

RESUMO

Obesity is an established risk factor for several cancers, including breast, colon, endometrial, ovarian, gastric, pancreatic and liver, and is increasingly a public health concern. Obese cancer patients often have poorer prognoses, reduced response to standard treatments, and are more likely to develop metastatic disease than normo-weight individuals. Many of the pathologic features of obesity promote tumor growth, such as metabolic perturbations, hormonal and growth factor imbalances, and chronic inflammation. Although obesity exacerbates tumor development, the interconnected relationship between the two conditions presents opportunities for new treatment approaches, some of which may be more successful in obese cohorts. Here, we discuss the many ways in which excess adiposity can impact cancer development and progression and address potential preventive and therapeutic strategies to reduce the burden of obesity-related cancers.


Assuntos
Peso Corporal , Neoplasias/complicações , Neoplasias/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Animais , Feminino , Hormônios Esteroides Gonadais/metabolismo , Humanos , Inflamação/complicações , Inflamação/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Hepatopatias/complicações , Hepatopatias/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Microbiota , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-26029167

RESUMO

Numerous epidemiological and pre-clinical studies have demonstrated that the insulin/insulin-like growth factor (IGF) system plays a key role in the development and progression of several types of cancer. Insulin/IGF signaling, in cooperation with chronic low-grade inflammation, is also an important contributor to the cancer-promoting effects of obesity. However, clinical trials for drugs targeting different components of this system have produced largely disappointing results, possibly due to the lack of predictive biomarker use and problems with the design of combination therapy regimens. With careful attention to the identification of likely patient responders and optimal drug combinations, the outcome of future trials may be improved. Given that insulin/IGF signaling is known to contribute to obesity-associated cancer, further investigation regarding the efficacy of drugs targeting this system and its downstream effectors in the obese patient population is warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA