Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 21(1): 29, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468047

RESUMO

BACKGROUND: Salmonella enterica remains a leading cause of food-borne diseases worldwide. Serotype information is important in food safety and public health activities to reduce the burden of salmonellosis. In the current study, two methods were used to determine serotypes of 111 strains of Salmonella isolated from poultry feces in Burkina Faso. First, Salmonella Multiplex Assay for Rapid Typing (SMART) Polymerase Chain Reaction (PCR) was used to determine the serovars of the S. enterica isolates. Second, serovar prediction based on whole genome sequencing (WGS) data was performed using SeqSero 2.0. RESULTS: Among the 111 Salmonella isolates, serotypes for 17 (15.31%) isolates were identified based on comparison to a panel of representative SMART codes previously determined for the 50 most common serovars in the United States. Forty-four (44) new SMART codes were developed for common and uncommon serotypes. A total of 105 (94.59%) isolates were serotyped using SeqSero 2.0 for serovar prediction based on WGS data. CONCLUSION: We determined that SeqSero 2.0 was more comprehensive for identifying Salmonella serotypes from Burkina Faso than SMART PCR.


Assuntos
Aves Domésticas/microbiologia , Salmonella/classificação , Salmonella/genética , Sorotipagem/métodos , Animais , Burkina Faso , Eletroforese Capilar , Fezes/microbiologia , Microbiologia de Alimentos , Reação em Cadeia da Polimerase Multiplex , Filogenia , Salmonella/isolamento & purificação , Sequenciamento Completo do Genoma
2.
Analyst ; 146(8): 2449-2462, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33899053

RESUMO

The COVID-19 pandemic has put the spotlight on the urgent need for integrated nucleic acid tests (NATs) for infectious diseases, especially those that can be used near patient ("point-of-care", POC), with rapid results and low cost, but without sacrificing sensitivity or specificity of gold standard PCR tests. In the US, the Clinical Laboratory Improvement Amendments Certificate of Waiver (CLIA-waiver) is mandated by the Food and Drug Administration (FDA) and designated to any laboratory testing with high simplicity and low risk for error, suitable for application in the POC. Since the first issuance of CLIA-waiver to Abbot's ID NOW Influenza A&B in 2015, many more NAT systems have been developed, received the CLIA-waiver in the US or World Health Organization (WHO)'s pre-qualification, and deployed to the front line of infectious disease detection. This review highlights the regulatory process for FDA and WHO in evaluating these NATs and the technology innovation of existing CLIA-waived systems. Understanding the technical advancement and challenges, unmet needs, and the trends of commercialization facilitated through the regulatory processes will help pave the foundation for future development and technology transfer from research to the market place.


Assuntos
COVID-19 , Doenças Transmissíveis , Ácidos Nucleicos , Doenças Transmissíveis/diagnóstico , Humanos , Ácidos Nucleicos/genética , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , SARS-CoV-2
3.
Analyst ; 146(9): 2851-2861, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949378

RESUMO

The number of people living with HIV continues to increase with the current total near 38 million, of which about 26 million are receiving antiretroviral therapy (ART). These treatment regimens are highly effective when properly managed, requiring routine viral load monitoring to assess successful viral suppression. Efforts to expand access by decentralizing HIV nucleic acid testing in low- and middle-income countries (LMICs) has been hampered by the cost and complexity of current tests. Sample preparation of blood samples has traditionally relied on cumbersome RNA extraction methods, and it continues to be a key bottleneck for developing low-cost POC nucleic acid tests. We present a microfluidic paper-based analytical device (µPAD) for extracting RNA and detecting HIV in serum, leveraging low-cost materials, simple buffers, and an electric field. We detect HIV virions and MS2 bacteriophage internal control in human serum using a novel lysis and RNase inactivation method, paper-based isotachophoresis (ITP) for RNA extraction, and duplexed reverse transcription recombinase polymerase amplification (RT-RPA) for nucleic acid amplification. We design a specialized ITP system to extract and concentrate RNA, while excluding harsh reagents used for lysis and RNase inactivation. We found the ITP µPAD can extract and purify 5000 HIV RNA copies per mL of serum. We then demonstrate detection of HIV virions and MS2 bacteriophage in human serum within 45-minutes.


Assuntos
Infecções por HIV , Isotacoforese , Infecções por HIV/diagnóstico , Humanos , Técnicas de Amplificação de Ácido Nucleico , RNA/genética , RNA Viral/genética , Recombinases/genética , Recombinases/metabolismo , Transcrição Reversa , Sensibilidade e Especificidade
4.
Clin Microbiol Rev ; 32(3)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31092508

RESUMO

The global public health community has set ambitious treatment targets to end the HIV/AIDS pandemic. With the notable absence of a cure, the goal of HIV treatment is to achieve sustained suppression of an HIV viral load, which allows for immunological recovery and reduces the risk of onward HIV transmission. Monitoring HIV viral load in people living with HIV is therefore central to maintaining effective individual antiretroviral therapy as well as monitoring progress toward achieving population targets for viral suppression. The capacity for laboratory-based HIV viral load testing has increased rapidly in low- and middle-income countries, but implementation of universal viral load monitoring is still hindered by several barriers and delays. New devices for point-of-care HIV viral load testing may be used near patients to improve HIV management by reducing the turnaround time for clinical test results. The implementation of near-patient testing using these new and emerging technologies may be an essential tool for ensuring a sustainable response that will ultimately enable an end to the HIV/AIDS pandemic. In this report, we review the current and emerging technology, the evidence for decentralized viral load monitoring by non-laboratory health care workers, and the additional considerations for expanding point-of-care HIV viral load testing.


Assuntos
Síndrome da Imunodeficiência Adquirida/diagnóstico , Infecções por HIV/diagnóstico , Testes Imediatos/tendências , Carga Viral/tendências , Gerenciamento Clínico , Saúde Global/normas , Saúde Global/tendências , Humanos , Testes Imediatos/normas
5.
Anal Chem ; 92(16): 11305-11309, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32605363

RESUMO

The SARS-CoV-2 pandemic has created an unprecedented need for rapid diagnostic testing to enable the efficient treatment and mitigation of COVID-19. The primary diagnostic tool currently employed is reverse transcription polymerase chain reaction (RT-PCR), which can have good sensitivity and excellent specificity. Unfortunately, implementation costs and logistical problems with reagents during the global SARS-CoV-2 pandemic have hindered its universal on demand adoption. Lateral flow assays (LFAs) represent a class of diagnostic that, if sufficiently clinically sensitive, may fill many of the gaps in the current RT-PCR testing regime, especially in low- and middle-income countries (LMICs). To date, many serology LFAs have been developed, though none meet the performance requirements necessary for diagnostic use cases, primarily due to the relatively long delay between infection and seroconversion. However, on the basis of previously reported results from SARS-CoV-1, antigen-based SARS-CoV-2 assays may have significantly better clinical sensitivity than serology assays. To date, only a very small number of antigen-detecting LFAs have been developed. Development of a half-strip LFA is a useful first step in the development of any LFA format. In this work, we present a half-strip LFA using commercially available antibodies for the detection of SARS-CoV-2. We have tested this LFA in buffer and measured an LOD of 0.65 ng/mL (95% CI of 0.53 to 0.77 ng/mL) ng/mL with recombinant antigen using an optical reader with sensitivity equivalent to a visual read. Further development, including evaluating the appropriate sample matrix, will be required for this assay approach to be made useful in a point of care setting, though this half-strip LFA may serve as a useful starting point for others developing similar tests.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/diagnóstico , Imunoensaio/métodos , Nucleocapsídeo/imunologia , Pneumonia Viral/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Anticorpos Antivirais/sangue , Antígenos/imunologia , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/virologia , Humanos , Limite de Detecção , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2
6.
J Clin Microbiol ; 57(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30404944

RESUMO

Malaria rapid diagnostic tests (RDTs) primarily detect Plasmodium falciparum antigen histidine-rich protein 2 (HRP2) and the malaria-conserved antigen lactate dehydrogenase (LDH) for P. vivax and other malaria species. The performance of RDTs and their utility is dependent on circulating antigen concentration distributions in infected individuals in a population in which malaria is endemic and on the limit of detection of the RDT for the antigens. A multiplexed immunoassay for the quantification of HRP2, P. vivax LDH, and all-malaria LDH (pan LDH) was developed to accurately measure circulating antigen concentration and antigen distribution in a population with endemic malaria. The assay also measures C-reactive protein (CRP) levels as an indicator of inflammation. Validation was conducted with clinical specimens from 397 asymptomatic donors from Myanmar and Uganda, confirmed by PCR for infection, and from participants in induced blood-stage malaria challenge studies. The assay lower limits of detection for HRP2, pan LDH, P. vivax LDH, and CRP were 0.2 pg/ml, 9.3 pg/ml, 1.5 pg/ml, and 26.6 ng/ml, respectively. At thresholds for HRP2, pan LDH, and P. vivax LDH of 2.3 pg/ml, 47.8 pg/ml, and 75.1 pg/ml, respectively, and a specificity ≥98.5%, the sensitivities for ultrasensitive PCR-confirmed infections were 93.4%, 84.9%, and 48.9%, respectively. Plasmodium LDH (pLDH) concentration, in contrast to that of HRP2, correlated closely with parasite density. CRP levels were moderately higher in P. falciparum infections with confirmed antigenemia versus those in clinical specimens with no antigen. The 4-plex array is a sensitive tool for quantifying diagnostic antigens in malaria infections and supporting the evaluation of new ultrasensitive RDTs.


Assuntos
Antígenos de Protozoários/sangue , Infecções Assintomáticas , Proteína C-Reativa/análise , Imunoensaio/métodos , Malária/sangue , Malária/diagnóstico , Adulto , Infecções Assintomáticas/epidemiologia , Criança , Pré-Escolar , Testes Diagnósticos de Rotina , Doenças Endêmicas , Humanos , Lactente , L-Lactato Desidrogenase/sangue , Malária/epidemiologia , Mianmar/epidemiologia , Plasmodium/imunologia , Proteínas de Protozoários/sangue , Sensibilidade e Especificidade , Uganda/epidemiologia
7.
Anal Chem ; 90(12): 7221-7229, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29761701

RESUMO

Nucleic acid amplification tests (NAATs) provide high diagnostic accuracy for infectious diseases and quantitative results for monitoring viral infections. The majority of NAATs require complex equipment, cold chain dependent reagents, and skilled technicians to perform the tests. This largely confines NAATs to centralized laboratories and can significantly delay appropriate patient care. Low-cost, point-of-care (POC) NAATs are especially needed in low-resource settings to provide patients with diagnosis and treatment planning in a single visit to improve patient care. In this work, we present a rapid POC NAAT with integrated sample preparation and amplification using electrokinetics and paper substrates. We use simultaneous isotachophoresis (ITP) and recombinase polymerase amplification (RPA) to rapidly extract, amplify, and detect target nucleic acids from serum and whole blood in a paper-based format. We demonstrate simultaneous ITP and RPA can consistently detect 5 copies per reaction in buffer and 10 000 copies per milliliter of human serum with no intermediate user steps. We also show preliminary extraction and amplification of DNA from whole blood samples. Our test is rapid (results in less than 20 min) and made from low-cost materials, indicating its potential for detecting infectious diseases and monitoring viral infections at the POC in low resource settings.


Assuntos
Isotacoforese , Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos/sangue , Ácidos Nucleicos/isolamento & purificação , Humanos , Isotacoforese/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Ácidos Nucleicos/genética , Papel , Sistemas Automatizados de Assistência Junto ao Leito
8.
Environ Monit Assess ; 189(11): 574, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29046968

RESUMO

Environmental surveillance of waterborne pathogens is vital for monitoring the spread of diseases, and electropositive filters are frequently used for sampling wastewater and wastewater-impacted surface water. Viruses adsorbed to electropositive filters require elution prior to detection or quantification. Elution is typically facilitated by a peristaltic pump, although this requires a significant startup cost and does not include biosafety or cross-contamination considerations. These factors may pose a barrier for low-resource laboratories that aim to conduct environmental surveillance of viruses. The objective of this study was to develop a biologically enclosed, manually powered, low-cost device for effectively eluting from electropositive ViroCap™ virus filters. The elution device described here utilizes a non-electric bilge pump, instead of an electric peristaltic pump or a positive pressure vessel. The elution device also fully encloses liquids and aerosols that could contain biological organisms, thereby increasing biosafety. Moreover, all elution device components that are used in the biosafety cabinet are autoclavable, reducing cross-contamination potential. This device reduces costs of materials while maintaining convenience in terms of size and weight. With this new device, there is little sample volume loss due to device inefficiency, similar virus yields were demonstrated during seeded studies with poliovirus type 1, and the time to elute filters is similar to that required with the peristaltic pump. The efforts described here resulted in a novel, low-cost, manually powered elution device that can facilitate environmental surveillance of pathogens through effective virus recovery from ViroCap filters while maintaining the potential for adaptability to other cartridge filters.


Assuntos
Monitoramento Ambiental/métodos , Filtração/métodos , Águas Residuárias/virologia , Microbiologia da Água , Adsorção , Humanos , Concentração de Íons de Hidrogênio , Poliovirus , Água
9.
Mol Cell Probes ; 30(2): 74-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26854117

RESUMO

Recombinase Polymerase Amplification (RPA) can be used to detect pathogen-specific DNA or RNA in under 20 min without the need for complex instrumentation. These properties enable its potential use in resource limited settings. However, there are concerns that deviations from the manufacturer's protocol and/or storage conditions could influence its performance in low resource settings. RPA amplification relies upon viscous crowding agents for optimal nucleic acid amplification, and thus an interval mixing step after 3-6 min of incubation is recommended to distribute amplicons and improve performance. In this study we used a HIV-1 RPA assay to evaluate the effects of this mixing step on assay performance. A lack of mixing led to a longer time to amplification and inferior detection signal, compromising the sensitivity of the assay. However lowering the assay volume from 50 µL to 5 µL showed similar sensitivity with or without mixing. We present the first peer-reviewed study that assesses long term stability of RPA reagents without a cold chain. Reagents stored at -20 °C, and 25 °C for up to 12 weeks were able to detect 10 HIV-1 DNA copies. Reagents stored at 45 °C for up to 3 weeks were able to detect 10 HIV-1 DNA copies, with reduced sensitivity only after >3 weeks at 45 °C. Together our results show that reducing reaction volumes bypassed the need for the mixing step and that RPA reagents were stable even when stored for 3 weeks at very high temperatures.


Assuntos
HIV-1/genética , RNA Viral/genética , Recombinases/metabolismo , Humanos , Técnicas de Amplificação de Ácido Nucleico , Sistemas Automatizados de Assistência Junto ao Leito , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinases/genética , Sensibilidade e Especificidade
10.
J Water Health ; 12(4): 747-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25473984

RESUMO

Poliovirus (PV) is on the verge of global eradication. Due to asymptomatic shedding, eradication certification requires environmental and clinical surveillance. Current environmental surveillance methods involve collection and processing of 400-mL to 1-L grab samples by a two-phase separation method, where sample volume limits detection sensitivity. Filtration of larger sample volumes facilitates increased detection sensitivity. This study describes development of a pumpless in-field filtration system for poliovirus recovery from environmental waters. Recovery of PV types 1, 2, and 3 were compared for glass wool, ViroCap, and NanoCeram (PV1 only) filters. Seeded experiments were performed using 10(5) plaque forming units of PV inoculated into 10-L volumes of secondary effluent, surface water, or a 50:50 mixture of each at pH 7.0. Filter eluates were plated onto buffalo green monkey kidney cells for virus enumeration by plaque assay. Across all water types, recovery from glass wool filters for PV1, PV2, and PV3 averaged 17%, 28%, and 6%, respectively. Recovery from ViroCaps for PV1, PV2, and PV3 averaged 44%, 70%, and 81%, respectively. 10-L samples of moderate turbidity water were processed through ViroCap filters in less than 30 minutes using a pumpless, bag-mediated filtration system. Bag-mediated filtration offers a simple, compact, and efficient method for enhanced environmental PV surveillance.


Assuntos
Monitoramento Ambiental/instrumentação , Poliovirus/isolamento & purificação , Esgotos/virologia , Ultrafiltração/instrumentação , Águas Residuárias/virologia , Microbiologia da Água , Animais , Células Cultivadas , Chlorocebus aethiops , Ensaio de Placa Viral
11.
Sens Diagn ; 3(3): 421-430, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38495597

RESUMO

Nucleic acid amplification tests for the detection of SARS-CoV-2 have been an important testing mechanism for the COVID-19 pandemic. While these traditional nucleic acid diagnostic methods are highly sensitive and selective, they are not suited to home or clinic-based uses. Comparatively, rapid antigen tests are cost-effective and user friendly but lack in sensitivity and specificity. Here we report on the development of a one-pot, duplexed reverse transcriptase recombinase polymerase amplification SARS-CoV-2 assay with MS2 bacteriophage as a full process control. Detection is carried out with either real-time fluorescence or lateral flow readout with an analytical sensitivity of 50 copies per reaction. Unlike previously published assays, the RNA-based MS2 bacteriophage control reports on successful operation of lysis, reverse transcription, and amplification. This SARS-CoV-2 assay features highly sensitive detection, visual readout through an LFA strip, results in less than 25 minutes, minimal instrumentation, and a useful process internal control to rule out false negative test results.

13.
PLoS One ; 19(5): e0301624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713678

RESUMO

Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of Typhoid fever. Blood culture is the gold standard for clinical diagnosis, but this is often difficult to employ in resource limited settings. Environmental surveillance of waste-impacted waters is a promising supplement to clinical surveillance, however validating methods is challenging in regions where S. Typhi concentrations are low. To evaluate existing S. Typhi environmental surveillance methods, a novel process control organism (PCO) was created as a biosafe surrogate. Using a previous described qPCR assay, a modified PCR amplicon for the staG gene was cloned into E. coli. We developed a target region that was recognized by the Typhoid primers in addition to a non-coding internal probe sequence. A multiplex qPCR reaction was developed that differentiates between the typhoid and control targets, with no cross-reactivity or inhibition of the two probes. The PCO was shown to mimic S. Typhi in lab-based experiments with concentration methods using primary wastewater: filter cartridge, recirculating Moore swabs, membrane filtration, and differential centrifugation. Across all methods, the PCO seeded at 10 CFU/mL and 100 CFU/mL was detected in 100% of replicates. The PCO is detected at similar quantification cycle (Cq) values across all methods at 10 CFU/mL (Average = 32.4, STDEV = 1.62). The PCO was also seeded into wastewater at collection sites in Vellore (India) and Blantyre (Malawi) where S. Typhi is endemic. All methods tested in both countries were positive for the seeded PCO. The PCO is an effective way to validate performance of environmental surveillance methods targeting S. Typhi in surface water.


Assuntos
Monitoramento Ambiental , Escherichia coli , Salmonella typhi , Salmonella typhi/genética , Salmonella typhi/isolamento & purificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Monitoramento Ambiental/métodos , Águas Residuárias/microbiologia , Febre Tifoide/microbiologia , Febre Tifoide/epidemiologia , Febre Tifoide/diagnóstico , Febre Tifoide/prevenção & controle , Humanos , Microbiologia da Água
14.
PLOS Glob Public Health ; 3(1): e0001074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36962955

RESUMO

The typhoid conjugate vaccine is a safe and effective method for preventing Salmonella enterica serovar Typhi (typhoid) and the WHO's guidance supports its use in locations with ongoing transmission. However, many countries lack a robust clinical surveillance system, making it challenging to determine where to use the vaccine. Environmental surveillance is one alternative approach to identify ongoing transmission, but the cost to implement such a strategy is previously unknown. This paper estimated the cost of setting up and operating an environmental surveillance program for thirteen protocols that are in development, including thirteen cost components and twenty-seven pieces of equipment. Unit costs were obtained from research labs involved in protocol development and equipment information was obtained from manufacturers and the expert opinion of individuals in participating labs. We used Monte Carlo simulations to estimate the costs and the input parameters were modeled as distributions to incorporate the uncertainty. Total costs per sample including setup, overhead, and operational costs, range from $357-794 at a scale of 25 sites to $116-532 at 125 sites. Operational costs (ongoing expenditures) range from $218-584 per sample at a scale of 25 sites to $74-421 at 125 sites. Eleven of the thirteen protocols have operational costs below $200, at this higher scale. Protocols with higher up-front equipment costs benefit more from scale efficiencies and sensitivity analyses show that laboratory labor, processes, and consumables are the primary drivers of uncertainty. At scale, environmental surveillance for typhoid may be affordable (depending on the protocol, scale, and geographic context), though cost will need to be considered alongside future evaluations of test sensitivity. Opportunities to leverage existing infrastructure and multi-disease platforms may be necessary to further reduce costs.

15.
Microbiol Spectr ; 11(3): e0373122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37166329

RESUMO

Rapid diagnostic tests (RDTs) that detect antigen indicative of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can help in making quick health care decisions and regularly monitoring groups at risk of infection. With many RDT products entering the market, it is important to rapidly evaluate their relative performance. Comparison of clinical evaluation study results is challenged by protocol design variations and study populations. Laboratory assays were developed to quantify nucleocapsid (N) and spike (S) SARS-CoV-2 antigens. Quantification of the two antigens in nasal eluates confirmed higher abundance of N than S antigen. The median concentration of N antigen was 10 times greater than S per genome equivalent. The N antigen assay was used in combination with quantitative reverse transcription (RT)-PCR to qualify a panel composed of recombinant antigens, inactivated virus, and clinical specimen pools. This benchmarking panel was applied to evaluate the analytical performance of the SD Biosensor Standard Q COVID-19 antigen (Ag) test, Abbott Panbio COVID-19 Ag rapid test, Abbott BinaxNOW COVID-19 Ag test, and the LumiraDx SARS-CoV-2 Ag test. The four tests displayed different sensitivities toward the different panel members, but all performed best with the clinical specimen pool. The concentration for a 90% probability of detection across the four tests ranged from 21 to 102 pg/mL of N antigen in the extracted sample. Benchmarking panels provide a quick way to verify the baseline performance of a diagnostic and enable direct comparisons between diagnostic tests. IMPORTANCE This study reports the results for severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) nucleocapsid (N) and spike (S) antigen quantification assays and their performance against clinical reverse transcription (RT)-PCR results, thus describing an open-access quantification method for two important SARS-CoV-2 protein analytes. Characterized N antigen panels were used to evaluate the limits of detection of four different rapid tests for SARS-CoV-2 against multiple sources of nucleocapsid antigen, demonstrating proof-of-concept materials and methodology to evaluate SARS-CoV-2 rapid antigen detection tests. Quantification of N antigen was used to characterize the relationship between viral count and antigen concentration among clinical samples and panel members of both clinical sample and viral culture origin. This contributes to a deeper understanding of protein antigen and molecular analytes and presents analytical methods complementary to clinical evaluation for characterizing the performance of both laboratory-based and point-of-care rapid diagnostics for SARS-CoV-2.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Indicadores e Reagentes , Benchmarking , Testes Diagnósticos de Rotina , Teste para COVID-19
16.
PLOS Glob Public Health ; 3(8): e0002044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37582061

RESUMO

Diagnostics are critical tools that guide clinical decision-making for patient care and support disease surveillance. Despite its importance, developers and manufacturers often note that access to specimen panels and essential reagents is one of the key challenges in developing quality diagnostics, particularly in low-resource settings. A recent example, as the COVID-19 pandemic unfolded there was a need for clinical samples across the globe to support the rapid development of diagnostics. To address these challenges and gaps, PATH, a global nonprofit, along with its partners collaborated to create a COVID-19 biorepository to improve access to biological samples. Since then, the need for data resources to advance universal rapid diagnostic test (RDT) readers and noninvasive clinical measurement tools for screening children have also been identified and initiated. From biospecimens to data files, there are more similarities than differences in creating open-access repositories. And to ensure equitable technologies are developed, diverse sample panels and datasets are critical in the development process. Here we share one experience in creating open-access repositories as a case study to describe the steps taken, the key factors required to establish a biorepository, the ethical and legal frameworks that guided the initiative and the lessons learned. As diagnostic tools are evolving, more forms of data are critical to de-risk and accelerate early research and development (R&D) for products serving low resource settings. Creating physical and virtual repositories of freely available, well characterized, and high quality clinical and electronic data resources defray development costs to improve equitable access and test affordability.

17.
PLoS One ; 18(7): e0287814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37467188

RESUMO

The relationship between N-antigen concentration and viral load within and across different specimens guides the clinical performance of rapid diagnostic tests (RDT) in different uses. A prospective study was conducted in Porto Velho, Brazil, to investigate RDT performance in different specimen types as a function of the correlation between antigen concentration and viral load. The study included 214 close contacts with recent exposures to confirmed cases, aged 12 years and older and with various levels of vaccination. Antigen concentration was measured in nasopharyngeal swab (NPS), anterior nares swab (ANS), and saliva specimens. Reverse transcriptase (RT)-PCR was conducted on the NPS and saliva specimens, and two RDTs were conducted on ANS and one RDT on saliva. Antigen concentration correlated well with viral load when measured in the same specimen type but not across specimen types. Antigen levels were higher in symptomatic cases compared to asymptomatic/oligosymptomatic cases and lower in saliva compared to NPS and ANS samples. Discordant results between the RDTs conducted on ANS and the RT-PCR on NPS were resolved by antigen concentration values. The analytical limit-of-detection of RDTs can be used to predict the performance of the tests in populations for which the antigen concentration is known. The antigen dynamics across different sample types observed in SARS-CoV-2 disease progression support use of RDTs with nasal samples. Given lower antigen concentrations in saliva, rapid testing using saliva is expected to require improved RDT analytical sensitivity to achieve clinical sensitivity similar to rapid testing of nasal samples.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Carga Viral , Estudos Prospectivos , COVID-19/diagnóstico , Testes Sorológicos , Saliva , Manejo de Espécimes , Sensibilidade e Especificidade , Nasofaringe
19.
J Clin Microbiol ; 50(2): 326-36, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22162548

RESUMO

Tuberculosis (TB) remains a significant global health problem for which rapid diagnosis is critical to both treatment and control. This report describes a multiplex PCR method, the Mycobacterial IDentification and Drug Resistance Screen (MID-DRS) assay, which allows identification of members of the Mycobacterium tuberculosis complex (MTBC) and the simultaneous amplification of targets for sequencing-based drug resistance screening of rifampin-resistant (rifampin(r)), isoniazid(r), and pyrazinamide(r) TB. Additionally, the same multiplex reaction amplifies a specific 16S rRNA gene target for rapid identification of M. avium complex (MAC) and a region of the heat shock protein 65 gene (hsp65) for further DNA sequencing-based confirmation or identification of other mycobacterial species. Comparison of preliminary results generated with MID-DRS versus culture-based methods for a total of 188 bacterial isolates demonstrated MID-DRS sensitivity and specificity as 100% and 96.8% for MTBC identification; 100% and 98.3% for MAC identification; 97.4% and 98.7% for rifampin(r) TB identification; 60.6% and 100% for isoniazid(r) TB identification; and 75.0% and 98.1% for pyrazinamide(r) TB identification. The performance of the MID-DRS was also tested on acid-fast-bacterium (AFB)-positive clinical specimens, resulting in sensitivity and specificity of 100% and 78.6% for detection of MTBC and 100% and 97.8% for detection of MAC. In conclusion, use of the MID-DRS reduces the time necessary for initial identification and drug resistance screening of TB specimens to as little as 2 days. Since all targets needed for completing the assay are included in a single PCR amplification step, assay costs, preparation time, and risks due to user errors are also reduced.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA/métodos , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Humanos , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
20.
PLoS One ; 17(11): e0277835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36409692

RESUMO

Processing and storing blood samples for future analysis of biomarkers can be challenging in resource limited environments. The preparation of dried blood spots (DBS) from finger-stick collection of whole blood is a widely used and established method as DBS are biosafe, and allow simpler field processing, storage, and transport protocols than serum or plasma. Therefore, DBS are commonly used in population surveys to assess infectious disease and/or micronutrient status. Recently, we reported that DBS can be used with the Q-plex™ Human Micronutrient 7-plex Array (MN 7-plex), a multiplexed immunoassay. This tool can simultaneously quantify seven protein biomarkers related to micronutrient deficiencies (iodine, iron and vitamin A), inflammation, and malarial antigenemia using plasma or serum. Serum ferritin, an iron biomarker, cannot be measured from DBS due to red blood cell (RBC) ferritin content confounding the results. In this study, we assess a simple blood fractionation tool that passively separates plasma from other blood components via diffusion through a membrane into a plasma collection disc (PCD). We evaluated the concordance of MN 7-plex analyte concentrations from matched panels of eighty-eight samples of PCD, DBS, and wet plasma prepared from anticoagulated venous whole blood. The results showed good correlations of >0.93 between the eluates from PCD and DBS for each analyte except ferritin; while correlations seen for plasma/PCD were weaker. However, the recovery rate of the analytes from the PCD were better than those from DBS. The serum ferritin measures from the PCD were highly correlated to wet plasma samples (0.85). This suggests that surveillance for iron status in low resource settings can be improved over the current methods restricted to only measuring sTfR in DBS. When used in combination with the MN 7-plex, all seven biomarkers can be simultaneously measured using eluates from the PCDs.


Assuntos
Micronutrientes , Oligoelementos , Humanos , Biomarcadores , Ferritinas , Ferro , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA