Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RNA ; 29(6): 735-744, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878710

RESUMO

It is estimated that nearly 50% of mammalian transcripts contain at least one upstream open reading frame (uORF), which are typically one to two orders of magnitude smaller than the downstream main ORF. Most uORFs are thought to be inhibitory as they sequester the scanning ribosome, but in some cases allow for translation reinitiation. However, termination in the 5' UTR at the end of uORFs resembles premature termination that is normally sensed by the nonsense-mediated mRNA decay (NMD) pathway. Translation reinitiation has been proposed as a method for mRNAs to prevent NMD. Here, we test how uORF length influences translation reinitiation and mRNA stability in HeLa cells. Using custom 5' UTRs and uORF sequences, we show that reinitiation can occur on heterologous mRNA sequences, favors small uORFs, and is supported when initiation occurs with more initiation factors. After determining reporter mRNA half-lives in HeLa cells and mining available mRNA half-life data sets for cumulative predicted uORF length, we conclude that translation reinitiation after uORFs is not a robust method for mRNAs to prevent NMD. Together, these data suggest that the decision of whether NMD ensues after translating uORFs occurs before reinitiation in mammalian cells.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Ribossomos , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células HeLa , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Fases de Leitura Aberta/genética , Biossíntese de Proteínas
2.
ChemistryOpen ; 11(2): e202100276, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35103415

RESUMO

Nucleic acid quadruplexes are proposed to play a role in the regulation of gene expression, are often present in aptamers selected for specific binding functions and have potential applications in medicine and biotechnology. Therefore, understanding their structure and thermodynamic properties and designing highly stable quadruplexes is desirable for a variety of applications. Here, we evaluate DNA→RNA substitutions in the context of a monomolecular, antiparallel quadruplex, the thrombin-binding aptamer (TBA, GGTTGGTGTGGTTGG) in the presence of either K+ or Sr2+ . TBA predominantly folds into a chair-type configuration containing two G-tetrads, with G residues in both syn and anti conformation. All chimeras with DNA→RNA substitutions (G→g) at G residues requiring the syn conformation demonstrated strong destabilization. In contrast, G→g substitutions at Gs with anti conformation increased stability without affecting the monomolecular chair-type topology. None of the DNA→RNA substitutions in loop positions affected the quadruplex topology; however, these substitutions varied widely in their stabilizing or destabilizing effects in an unpredictable manner. This analysis allowed us to design a chimeric DNA/RNA TBA construct that demonstrated substantially improved stability relative to the all-DNA construct. These results have implications for a variety of quadruplex-based applications including for the design of dynamic nanomachines.


Assuntos
Quadruplex G , RNA , Quimera , DNA/química , DNA/genética , RNA/genética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA