Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 184(14): 3774-3793.e25, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34115982

RESUMO

Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.


Assuntos
Citomegalovirus/fisiologia , Macrófagos Alveolares/virologia , Animais , Apresentação de Antígeno , Efeito Espectador , Ciclo Celular , Linhagem Celular Transformada , Reprogramação Celular , Citomegalovirus/patogenicidade , Citomegalovirus/ultraestrutura , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Proteínas de Fluorescência Verde/metabolismo , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Células-Tronco/patologia , Replicação Viral/fisiologia , Via de Sinalização Wnt
2.
EMBO J ; 42(7): e111148, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36843552

RESUMO

Osteoclasts are bone-resorbing polykaryons responsible for skeletal remodeling during health and disease. Coincident with their differentiation from myeloid precursors, osteoclasts undergo extensive transcriptional and metabolic reprogramming in order to acquire the cellular machinery necessary to demineralize bone and digest its interwoven extracellular matrix. While attempting to identify new regulatory molecules critical to bone resorption, we discovered that murine and human osteoclast differentiation is accompanied by the expression of Zeb1, a zinc-finger transcriptional repressor whose role in normal development is most frequently linked to the control of epithelial-mesenchymal programs. However, following targeting, we find that Zeb1 serves as an unexpected regulator of osteoclast energy metabolism. In vivo, Zeb1-null osteoclasts assume a hyperactivated state, markedly decreasing bone density due to excessive resorptive activity. Mechanistically, Zeb1 acts in a rheostat-like fashion to modulate murine and human osteoclast activity by transcriptionally repressing an ATP-buffering enzyme, mitochondrial creatine kinase 1 (MtCK1), thereby controlling the phosphocreatine energy shuttle and mitochondrial respiration. Together, these studies identify a novel Zeb1/MtCK1 axis that exerts metabolic control over bone resorption in vitro and in vivo.


Assuntos
Reabsorção Óssea , Osteoclastos , Camundongos , Animais , Humanos , Osteoclastos/metabolismo , Creatina Quinase Mitocondrial/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Osso e Ossos , Diferenciação Celular , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
3.
EMBO Rep ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937629

RESUMO

The EMT-transcription factor ZEB1 is heterogeneously expressed in tumor cells and in cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC). While ZEB1 in tumor cells regulates metastasis and therapy resistance, its role in CAFs is largely unknown. Combining fibroblast-specific Zeb1 deletion with immunocompetent mouse models of CRC, we observe that inflammation-driven tumorigenesis is accelerated, whereas invasion and metastasis in sporadic cancers are reduced. Single-cell transcriptomics, histological characterization, and in vitro modeling reveal a crucial role of ZEB1 in CAF polarization, promoting myofibroblastic features by restricting inflammatory activation. Zeb1 deficiency impairs collagen deposition and CAF barrier function but increases NFκB-mediated cytokine production, jointly promoting lymphocyte recruitment and immune checkpoint activation. Strikingly, the Zeb1-deficient CAF repertoire sensitizes to immune checkpoint inhibition, offering a therapeutic opportunity of targeting ZEB1 in CAFs and its usage as a prognostic biomarker. Collectively, we demonstrate that ZEB1-dependent plasticity of CAFs suppresses anti-tumor immunity and promotes metastasis.

4.
EMBO J ; 40(18): e108647, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34459003

RESUMO

The process of epithelial-mesenchymal transition (EMT) is fundamental for embryonic morphogenesis. Cells undergoing it lose epithelial characteristics and integrity, acquire mesenchymal features, and become motile. In cancer, this program is hijacked to confer essential changes in morphology and motility that fuel invasion. In addition, EMT is increasingly understood to orchestrate a large variety of complementary cancer features, such as tumor cell stemness, tumorigenicity, resistance to therapy and adaptation to changes in the microenvironment. In this review, we summarize recent findings related to these various classical and non-classical functions, and introduce EMT as a true tumorigenic multi-tool, involved in many aspects of cancer. We suggest that therapeutic targeting of the EMT process will-if acknowledging these complexities-be a possibility to concurrently interfere with tumor progression on many levels.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias/etiologia , Neoplasias/patologia , Microambiente Tumoral , Animais , Biomarcadores , Transformação Celular Neoplásica , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral/genética
5.
EMBO J ; 39(17): e103209, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32692442

RESUMO

Invasion, metastasis and therapy resistance are the major cause of cancer-associated deaths, and the EMT-inducing transcription factor ZEB1 is a crucial stimulator of these processes. While work on ZEB1 has mainly focused on its role as a transcriptional repressor, it can also act as a transcriptional activator. To further understand these two modes of action, we performed a genome-wide ZEB1 binding study in triple-negative breast cancer cells. We identified ZEB1 as a novel interactor of the AP-1 factors FOSL1 and JUN and show that, together with the Hippo pathway effector YAP, they form a transactivation complex, predominantly activating tumour-promoting genes, thereby synergising with its function as a repressor of epithelial genes. High expression of ZEB1, YAP, FOSL1 and JUN marks the aggressive claudin-low subtype of breast cancer, indicating the translational relevance of our findings. Thus, our results link critical tumour-promoting transcription factors: ZEB1, AP-1 and Hippo pathway factors. Disturbing their molecular interaction may provide a promising treatment option for aggressive cancer types.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Transição Epitelial-Mesenquimal , Genoma Humano , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
6.
PLoS Biol ; 19(9): e3001394, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34550965

RESUMO

The ZEB2 transcription factor has been demonstrated to play important roles in hematopoiesis and leukemic transformation. ZEB1 is a close family member of ZEB2 but has remained more enigmatic concerning its roles in hematopoiesis. Here, we show using conditional loss-of-function approaches and bone marrow (BM) reconstitution experiments that ZEB1 plays a cell-autonomous role in hematopoietic lineage differentiation, particularly as a positive regulator of monocyte development in addition to its previously reported important role in T-cell differentiation. Analysis of existing single-cell (sc) RNA sequencing (RNA-seq) data of early hematopoiesis has revealed distinctive expression differences between Zeb1 and Zeb2 in hematopoietic stem and progenitor cell (HSPC) differentiation, with Zeb2 being more highly and broadly expressed than Zeb1 except at a key transition point (short-term HSC [ST-HSC]➔MPP1), whereby Zeb1 appears to be the dominantly expressed family member. Inducible genetic inactivation of both Zeb1 and Zeb2 using a tamoxifen-inducible Cre-mediated approach leads to acute BM failure at this transition point with increased long-term and short-term hematopoietic stem cell numbers and an accompanying decrease in all hematopoietic lineage differentiation. Bioinformatics analysis of RNA-seq data has revealed that ZEB2 acts predominantly as a transcriptional repressor involved in restraining mature hematopoietic lineage gene expression programs from being expressed too early in HSPCs. ZEB1 appears to fine-tune this repressive role during hematopoiesis to ensure hematopoietic lineage fidelity. Analysis of Rosa26 locus-based transgenic models has revealed that Zeb1 as well as Zeb2 cDNA-based overexpression within the hematopoietic system can drive extramedullary hematopoiesis/splenomegaly and enhance monocyte development. Finally, inactivation of Zeb2 alone or Zeb1/2 together was found to enhance survival in secondary MLL-AF9 acute myeloid leukemia (AML) models attesting to the oncogenic role of ZEB1/2 in AML.


Assuntos
Linhagem da Célula , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Células da Medula Óssea/patologia , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Transgênicos , RNA-Seq , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
7.
J Pathol ; 254(2): 199-211, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675037

RESUMO

Osteosarcoma is an often-fatal mesenchyme-derived malignancy in children and young adults. Overexpression of EMT-transcription factors (EMT-TFs) has been associated with poor clinical outcome. Here, we demonstrated that the EMT-TF ZEB1 is able to block osteoblastic differentiation in normal bone development as well as in osteosarcoma cells. Consequently, overexpression of ZEB1 in osteosarcoma characterizes poorly differentiated, highly metastatic subgroups and its depletion induces differentiation of osteosarcoma cells. Overexpression of ZEB1 in osteosarcoma is frequently associated with silencing of the imprinted DLK-DIO3 locus, which encodes for microRNAs targeting ZEB1. Epigenetic reactivation of this locus in osteosarcoma cells reduces ZEB1 expression, induces differentiation, and sensitizes to standard treatment, thus indicating therapeutic options for ZEB1-driven osteosarcomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Osteossarcoma/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Desenvolvimento Ósseo , Neoplasias Ósseas/tratamento farmacológico , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Epigenômica , Expressão Gênica , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Osteoblastos/patologia , Osteossarcoma/tratamento farmacológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
8.
EMBO Rep ; 20(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30413481

RESUMO

Directional migration is inherently important for epithelial tissue regeneration and repair, but how it is precisely controlled and coordinated with cell proliferation is unclear. Here, we report that Ovol2, a transcriptional repressor that inhibits epithelial-to-mesenchymal transition (EMT), plays a crucial role in adult skin epithelial regeneration and repair. Ovol2-deficient mice show compromised wound healing characterized by aberrant epidermal cell migration and proliferation, as well as delayed anagen progression characterized by defects in hair follicle matrix cell proliferation and subsequent differentiation. Epidermal keratinocytes and bulge hair follicle stem cells (Bu-HFSCs) lacking Ovol2 fail to expand in culture and display molecular alterations consistent with enhanced EMT and reduced proliferation. Live imaging of wound explants and Bu-HFSCs reveals increased migration speed but reduced directionality, and post-mitotic cell cycle arrest. Remarkably, simultaneous deletion of Zeb1 encoding an EMT-promoting factor restores directional migration to Ovol2-deficient Bu-HFSCs. Taken together, our findings highlight the important function of an Ovol2-Zeb1 EMT-regulatory circuit in controlling the directional migration of epithelial stem and progenitor cells to facilitate adult skin epithelial regeneration and repair.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Animais , Diferenciação Celular , Células Epidérmicas/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Queratinócitos/metabolismo , Camundongos , Pele/crescimento & desenvolvimento , Pele/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Cicatrização/genética
9.
Genesis ; 55(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28176446

RESUMO

The multizinc finger containing transcription factor ZEB1 plays crucial roles during various aspects of mammalian development and tumorigenesis. Best studied in human tumors, ZEB1 is activating the embryo-derived program of epithelial-mesenchymal transition (EMT). The aberrant activation of EMT confers an invasive metastasizing phenotype with acquisition of stem cell properties and resistance to radio- and chemotherapy. Although ZEB1 has very important functions in tumor progression, not much is known about its role in physiological contexts and during development and homeostasis. We describe the generation of Zeb1flox/flox mice carrying a targeted mutation for conditional Zeb1 gene inactivation and show that homozygous Zeb1-depletion in the germline results in a phenotype similar to the conventional Zeb1 knockout.


Assuntos
Técnicas de Inativação de Genes/métodos , Inativação Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Animais , Células Cultivadas , Regulação para Baixo , Fibroblastos/metabolismo , Mutação em Linhagem Germinativa , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
10.
Int J Cancer ; 137(11): 2566-77, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26077342

RESUMO

Invasion and metastasis of carcinomas are often activated by induction of aberrant epithelial-mesenchymal transition (EMT). This is mainly driven by the transcription factor ZEB1, promoting tumor-initiating capacity correlated with increased expression of the putative stem cell marker CD44. However, the direct link between ZEB1, CD44 and tumourigenesis is still enigmatic. Remarkably, EMT-induced repression of ESRP1 controls alternative splicing of CD44, causing a shift in the expression from the variant CD44v to the standard CD44s isoform. We analyzed whether CD44 and ZEB1 regulate each other and show that ZEB1 controls CD44s splicing by repression of ESRP1 in breast and pancreatic cancer. Intriguingly, CD44s itself activates the expression of ZEB1, resulting in a self-sustaining ZEB1 and CD44s expression. Activation of this novel CD44s-ZEB1 regulatory loop has functional impact on tumor cells, as evident by increased tumor-sphere initiation capacity, drug-resistance and tumor recurrence. In summary, we identified a self-enforcing feedback loop that employs CD44s to activate ZEB1 expression. This renders tumor cell stemness independent of external stimuli, as ZEB1 downregulates ESRP1, further promoting CD44s isoform synthesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio/genética , Receptores de Hialuronatos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fatores de Transcrição/genética , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Células MCF-7 , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Proteínas de Ligação a RNA/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco
11.
EMBO J ; 30(4): 770-82, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21224848

RESUMO

Notch signalling is important for development and tissue homeostasis and activated in many human cancers. Nevertheless, mutations in Notch pathway components are rare in solid tumours. ZEB1 is an activator of an epithelial-mesenchymal transition (EMT) and has crucial roles in tumour progression towards metastasis. ZEB1 and miR-200 family members repress expression of each other in a reciprocal feedback loop. Since miR-200 members target stem cell factors, ZEB1 indirectly induces stemness maintenance and associated drug resistance. Here, we link ZEB1 and its cancer promoting properties to Notch activation. We show that miR-200 members target Notch pathway components, such as Jagged1 (Jag1) and the mastermind-like coactivators Maml2 and Maml3, thereby mediating enhanced Notch activation by ZEB1. We further detected a coordinated upregulation of Jag1 and ZEB1, associated with reduced miR-200 expression in two aggressive types of human cancer, pancreatic adenocarcinoma and basal type of breast cancer. These findings explain increased Notch signalling in some types of cancers, where mutations in Notch pathway genes are rare. Moreover, they indicate an additional way how ZEB1 exerts its tumour progressing functions.


Assuntos
Proteínas de Homeodomínio/fisiologia , MicroRNAs/fisiologia , Neoplasias/genética , Receptores Notch/metabolismo , Fatores de Transcrição/fisiologia , Sequência de Bases , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica/fisiologia , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteína Jagged-1 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , MicroRNAs/genética , Modelos Biológicos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Notch/genética , Proteínas Serrate-Jagged , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transativadores , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco
12.
Exp Hematol ; 134: 104177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38336135

RESUMO

Emerging evidence implicates the epithelial-mesenchymal transition transcription factor Zeb1 as a critical regulator of hematopoietic stem cell (HSC) differentiation. Whether Zeb1 regulates long-term maintenance of HSC function remains an open question. Using an inducible Mx-1-Cre mouse model that deletes conditional Zeb1 alleles in the adult hematopoietic system, we found that mice engineered to be deficient in Zeb1 for 32 weeks displayed expanded immunophenotypically defined adult HSCs and multipotent progenitors associated with increased abundance of lineage-biased/balanced HSC subsets and augmented cell survival characteristics. During hematopoietic differentiation, persistent Zeb1 loss increased B cells in the bone marrow and spleen and decreased monocyte generation in the peripheral blood. In competitive transplantation experiments, we found that HSCs from adult mice with long-term Zeb1 deletion displayed a cell autonomous defect in multilineage differentiation capacity. Long-term Zeb1 loss perturbed extramedullary hematopoiesis characterized by increased splenic weight and a paradoxical reduction in splenic cellularity that was accompanied by HSC exhaustion, lineage-specific defects, and an accumulation of aberrant, preleukemic like c-kit+CD16/32+ progenitors. Loss of Zeb1 for up to 42 weeks can lead to progressive splenomegaly and an accumulation of Gr-1+Mac-1+ cells, further supporting the notion that long-term expression of Zeb1 suppresses preleukemic activity. Thus, sustained Zeb1 deletion disrupts HSC functionality in vivo and impairs regulation of extramedullary hematopoiesis with potential implications for tumor suppressor functions of Zeb1 in myeloid neoplasms.


Assuntos
Hematopoese Extramedular , Células-Tronco Hematopoéticas , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Animais , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/patologia , Hematopoese Extramedular/genética , Diferenciação Celular , Camundongos Knockout , Baço/metabolismo , Baço/patologia , Baço/citologia , Células-Tronco Adultas/metabolismo , Linhagem da Célula
13.
Nat Cell Biol ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009641

RESUMO

Therapy resistance and metastasis, the most fatal steps in cancer, are often triggered by a (partial) activation of the epithelial-mesenchymal transition (EMT) programme. A mesenchymal phenotype predisposes to ferroptosis, a cell death pathway exerted by an iron and oxygen-radical-mediated peroxidation of phospholipids containing polyunsaturated fatty acids. We here show that various forms of EMT activation, including TGFß stimulation and acquired therapy resistance, increase ferroptosis susceptibility in cancer cells, which depends on the EMT transcription factor Zeb1. We demonstrate that Zeb1 increases the ratio of phospholipids containing pro-ferroptotic polyunsaturated fatty acids over cyto-protective monounsaturated fatty acids by modulating the differential expression of the underlying crucial enzymes stearoyl-Co-A desaturase 1 (SCD), fatty acid synthase (FASN), fatty acid desaturase 2 (FADS2), elongation of very long-chain fatty acid 5 (ELOVL5) and long-chain acyl-CoA synthetase 4 (ACSL4). Pharmacological inhibition of selected lipogenic enzymes (SCD and FADS2) allows the manipulation of ferroptosis sensitivity preferentially in high-Zeb1-expressing cancer cells. Our data are of potential translational relevance and suggest a combination of ferroptosis activators and SCD inhibitors for the treatment of aggressive cancers expressing high Zeb1.

14.
Redox Biol ; 75: 103211, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38908072

RESUMO

Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.

15.
Ocul Surf ; 29: 401-405, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321448

RESUMO

Epithelial-mesenchymal transition (EMT) constitutes an important pathway in organ fibrosis seen in the lungs, liver, eye, and salivary glands. This review summarizes the EMT observed within the lacrimal gland during its development, tissue damage and repair along with possible translational implications. Existing animal and human studies have reported the increased expression of EMT regulators i.e., transcription factors like Snail, TGF-ß1 within the lacrimal glands, and a possible role of reactive oxygen species, which might be initiating the cascade of EMT. In these studies, EMT is typically detected by reduced E-cadherin expression in the epithelial cells and increased Vimentin and Snail expression within the lacrimal glands' myoepithelial or ductal epithelial cells. Other than specific markers, electron microscopic evidence of disrupted basal lamina, increased collagen deposition, reorganised cytoskeleton of myoepithelial cells also indicated EMT. Very few studies have shown myoepithelial cells to be the cells transitioning into mesenchymal cells with increased extracellular matrix deposition within the lacrimal glands. EMT in animal models seemed reversible as glands got repaired after damage with IL-1α injection or duct ligation and transiently used the EMT as a means for tissue repair. The EMT cells also expressed nestin, a marker for progenitor cells in a rabbit duct ligation model. However, lacrimal glands of ocular graft versus host disease and IgG4 dacryoadenitis demonstrate irreversible acinar atrophy along with signs of EMT-fibrosis, reduced E-cadherin, and increased Vimentin and Snail expression. Future studies exploring the molecular mechanisms of EMT and thereby developing targeted therapies capable of transforming the mesenchymal cells into epithelial cells or blocking the EMT might help in the restoration of the lacrimal gland function.


Assuntos
Aparelho Lacrimal , Animais , Humanos , Coelhos , Aparelho Lacrimal/metabolismo , Transição Epitelial-Mesenquimal , Vimentina/metabolismo , Fibrose , Caderinas/metabolismo , Morfogênese , Células Epiteliais/metabolismo
16.
EMBO Rep ; 11(9): 670-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20706219

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a fundamental process in development and disease. Zinc-finger enhancer binding (ZEB) transcription factors (ZEB1 and ZEB2) are crucial EMT activators, whereas members of the miR-200 family induce epithelial differentiation. They are reciprocally linked in a feedback loop, each strictly controlling the expression of the other. Now data show that EMT not only confers cellular motility, but also induces stem-cell properties and prevents apoptosis and senescence. Thus the balanced expression of ZEB factors and miR-200 controls all these processes. We therefore propose that the ZEB/miR-200 feedback loop is the molecular motor of cellular plasticity in development and disease, and in particular is a driving force for cancer progression towards metastasis by controlling the state of cancer stem cells.


Assuntos
Retroalimentação Fisiológica , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Neoplasias/fisiopatologia , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Apoptose , Diferenciação Celular , Proliferação de Células , Senescência Celular , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
17.
Cell Rep ; 41(11): 111819, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516781

RESUMO

The DNA damage response (DDR) and epithelial-to-mesenchymal transition (EMT) are two crucial cellular programs in cancer biology. While the DDR orchestrates cell-cycle progression, DNA repair, and cell death, EMT promotes invasiveness, cellular plasticity, and intratumor heterogeneity. Therapeutic targeting of EMT transcription factors, such as ZEB1, remains challenging, but tumor-promoting DDR alterations elicit specific vulnerabilities. Using multi-omics, inhibitors, and high-content microscopy, we discover a chemoresistant ZEB1-high-expressing sub-population (ZEB1hi) with co-rewired cell-cycle progression and proficient DDR across tumor entities. ZEB1 stimulates accelerated S-phase entry via CDK6, inflicting endogenous DNA replication stress. However, DDR buildups involving constitutive MRE11-dependent fork resection allow homeostatic cycling and enrichment of ZEB1hi cells during transforming growth factor ß (TGF-ß)-induced EMT and chemotherapy. Thus, ZEB1 promotes G1/S transition to launch a progressive DDR benefitting stress tolerance, which concurrently manifests a targetable vulnerability in chemoresistant ZEB1hi cells. Our study thus highlights the translationally relevant intercept of the DDR and EMT.


Assuntos
Fatores de Transcrição , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Replicação do DNA
18.
Curr Eye Res ; 46(6): 789-795, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33045170

RESUMO

PURPOSE: To detect the immunohistochemical changes in the main lacrimal glands of patients suffering from chronic ocular sequelae of Stevens-Johnson syndrome (SJS). METHODS: Histological sections of biopsies from the lacrimal gland of three chronic SJS patients (mean age, 33 years; 2 males) with severe dry eye disease (Schirmer = 0 mm) were assessed using double immunofluorescence techniques. Changes in the expression of secretory proteins lactoferrin (Lf), lysozyme (Ly), aquaporin 5 (AQP5), S-100, and early apoptosis marker (Annexin V) were studied. RESULTS: Different morphological expressions of secretory proteins were present in the three samples. One sample had maintained the immunoreactivity for Lf, Ly, S-100, similar to healthy controls. Two samples had significantly reduced immunoreactivity for anti-Lf, anti-Ly, and S-100, the weakest being in the sample with distorted lobular architecture and mild interlobular fibrosis. AQP5 had a distinct vesicular intracytoplasmic immunoreactivity suggesting defective trafficking and integration of the protein to the apical membrane. There was no S-100 immunostaining in the acinar or ductal epithelium, whereas interstitial nerve fibers scattered in the periacinar region showed reduced immunoreactivity for S-100. There was strong Annexin V immunoreactivity in the nuclei of epithelial cells in the majority of acinar and ductal epithelia of all the samples, with distorted nuclear morphology in one sample. CONCLUSION: Defective trafficking of AQP5 and variable expression of Ly, Lf, S-100 are the notable findings in the lacrimal glands of chronic SJS patients along with signs of early apoptosis. It suggests that the palpebral lobe of the lacrimal gland is involved in the pathological processes occurring in the conjunctiva of SJS patients.


Assuntos
Biomarcadores/metabolismo , Síndromes do Olho Seco/metabolismo , Proteínas do Olho/metabolismo , Aparelho Lacrimal/metabolismo , Síndrome de Stevens-Johnson/complicações , Adulto , Anexina A5/metabolismo , Apoptose , Aquaporina 5/metabolismo , Doença Crônica , Síndromes do Olho Seco/etiologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Aparelho Lacrimal/patologia , Lactoferrina/metabolismo , Masculino , Muramidase/metabolismo , Proteínas S100/metabolismo , Adulto Jovem
19.
Cell Rep ; 36(8): 109588, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433050

RESUMO

Radial glia-like (RGL) stem cells persist in the adult mammalian hippocampus, where they generate new neurons and astrocytes throughout life. The process of adult neurogenesis is well documented, but cell-autonomous factors regulating neuronal and astroglial differentiation are incompletely understood. Here, we evaluate the functions of the transcription factor zinc-finger E-box binding homeobox 1 (ZEB1) in adult hippocampal RGL cells using a conditional-inducible mouse model. We find that ZEB1 is necessary for self-renewal of active RGL cells. Genetic deletion of Zeb1 causes a shift toward symmetric cell division that consumes the RGL cell and generates pro-neuronal progenies, resulting in an increase of newborn neurons and a decrease of newly generated astrocytes. We identify ZEB1 as positive regulator of the ets-domain transcription factor ETV5 that is critical for asymmetric division.


Assuntos
Autorrenovação Celular/fisiologia , Hipocampo/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Diferenciação Celular/genética , Células Ependimogliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Hipocampo/efeitos dos fármacos , Humanos , Camundongos , Neurogênese/fisiologia , Neurônios/metabolismo
20.
Cell Death Discov ; 7(1): 138, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34112759

RESUMO

The pancreas is comprised of exocrine and endocrine compartments releasing digestive enzymes into the duodenum and regulating blood glucose levels by insulin and glucagon release. Tissue homeostasis is depending on transcription factor networks, involving Ptf1α, Ngn3, Nkx6.1, and Sox9, which are already activated during organogenesis. However, proper organ function is challenged by diets of high sugar and fat content, increasing the risk of type 2 diabetes and other disorders. A detailed understanding of processes that are important for homeostasis and are impaired during type 2 diabetes is lacking. Here, we show that Zeb1-a transcription factor known for its pivotal role in epithelial-mesenchymal transition, cell plasticity, and metastasis in cancer-is expressed at low levels in epithelial cells of the pancreas and is crucial for organogenesis and pancreas function. Loss of Zeb1 in these cells result in an increase of islet mass, impaired glucose tolerance, and sensitizes to develop liver and pancreas steatosis during diabetes and obesity. Interestingly, moderate overexpression of Zeb1 results in severe pancreas agenesis and lethality after birth, due to islet insufficiency and lack of acinar structures. We show that Zeb1 induction interferes with proper differentiation, cell survival, and proliferation during pancreas formation, due to deregulated expression of endocrine-specific transcription factors. In summary, our analysis suggests a novel role of Zeb1 for homeostasis in epithelial cells that is indispensable for pancreas morphogenesis and proper organ function involving a tight regulation of Zeb1 expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA