Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Cell ; 180(2): 278-295.e23, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31978345

RESUMO

Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases the risk for Crohn's disease and leprosy. We developed an unbiased liquid chromatography-mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic orthologs additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5'-thioadenosine phosphorylase activity, hence, combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronizes mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Adenina/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Cromatografia Líquida/métodos , Células HEK293 , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Espectrometria de Massas/métodos , Enzimas Multifuncionais/genética , Fosforilação , Proteínas/genética , Nucleotídeos de Purina/metabolismo , Purinas/metabolismo
2.
Cell ; 162(1): 146-59, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26140595

RESUMO

KRAS is one of the most frequently mutated oncogenes in human cancer. Despite substantial efforts, no clinically applicable strategy has yet been developed to effectively treat KRAS-mutant tumors. Here, we perform a cell-line-based screen and identify strong synergistic interactions between cell-cycle checkpoint-abrogating Chk1- and MK2 inhibitors, specifically in KRAS- and BRAF-driven cells. Mechanistically, we show that KRAS-mutant cancer displays intrinsic genotoxic stress, leading to tonic Chk1- and MK2 activity. We demonstrate that simultaneous Chk1- and MK2 inhibition leads to mitotic catastrophe in KRAS-mutant cells. This actionable synergistic interaction is validated using xenograft models, as well as distinct Kras- or Braf-driven autochthonous murine cancer models. Lastly, we show that combined checkpoint inhibition induces apoptotic cell death in KRAS- or BRAF-mutant tumor cells directly isolated from patients. These results strongly recommend simultaneous Chk1- and MK2 inhibition as a therapeutic strategy for the treatment of KRAS- or BRAF-driven cancers.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas ras/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Animais , Pontos de Checagem do Ciclo Celular , Quinase 1 do Ponto de Checagem , Dano ao DNA , Modelos Animais de Doenças , Xenoenxertos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Transplante de Neoplasias , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Células Tumorais Cultivadas
4.
Mol Cell ; 81(16): 3323-3338.e14, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34352207

RESUMO

The emerging "epitranscriptomics" field is providing insights into the biological and pathological roles of different RNA modifications. The RNA methyltransferase METTL1 catalyzes N7-methylguanosine (m7G) modification of tRNAs. Here we find METTL1 is frequently amplified and overexpressed in cancers and is associated with poor patient survival. METTL1 depletion causes decreased abundance of m7G-modified tRNAs and altered cell cycle and inhibits oncogenicity. Conversely, METTL1 overexpression induces oncogenic cell transformation and cancer. Mechanistically, we find increased abundance of m7G-modified tRNAs, in particular Arg-TCT-4-1, and increased translation of mRNAs, including cell cycle regulators that are enriched in the corresponding AGA codon. Accordingly, Arg-TCT expression is elevated in many tumor types and is associated with patient survival, and strikingly, overexpression of this individual tRNA induces oncogenic transformation. Thus, METTL1-mediated tRNA modification drives oncogenic transformation through a remodeling of the mRNA "translatome" to increase expression of growth-promoting proteins and represents a promising anti-cancer target.


Assuntos
Carcinogênese/genética , Metiltransferases/genética , Neoplasias/genética , tRNA Metiltransferases/genética , Guanosina/análogos & derivados , Guanosina/genética , Humanos , Metilação , Neoplasias/patologia , Oncogenes/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , RNA de Transferência/genética
5.
Genes Dev ; 35(15-16): 1109-1122, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301766

RESUMO

Lung adenocarcinoma, the most prevalent lung cancer subtype, is characterized by its high propensity to metastasize. Despite the importance of metastasis in lung cancer mortality, its underlying cellular and molecular mechanisms remain largely elusive. Here, we identified miR-200 miRNAs as potent suppressors for lung adenocarcinoma metastasis. miR-200 expression is specifically repressed in mouse metastatic lung adenocarcinomas, and miR-200 decrease strongly correlates with poor patient survival. Consistently, deletion of mir-200c/141 in the KrasLSL-G12D/+ ; Trp53flox/flox lung adenocarcinoma mouse model significantly promoted metastasis, generating a desmoplastic tumor stroma highly reminiscent of metastatic human lung cancer. miR-200 deficiency in lung cancer cells promotes the proliferation and activation of adjacent cancer-associated fibroblasts (CAFs), which in turn elevates the metastatic potential of cancer cells. miR-200 regulates the functional interaction between cancer cells and CAFs, at least in part, by targeting Notch ligand Jagged1 and Jagged2 in cancer cells and inducing Notch activation in adjacent CAFs. Hence, the interaction between cancer cells and CAFs constitutes an essential mechanism to promote metastatic potential.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pulmonares , MicroRNAs , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica/patologia
6.
Nat Immunol ; 17(9): 1046-56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27478939

RESUMO

Single-nucleotide variations in C13orf31 (LACC1) that encode p.C284R and p.I254V in a protein of unknown function (called 'FAMIN' here) are associated with increased risk for systemic juvenile idiopathic arthritis, leprosy and Crohn's disease. Here we set out to identify the biological mechanism affected by these coding variations. FAMIN formed a complex with fatty acid synthase (FASN) on peroxisomes and promoted flux through de novo lipogenesis to concomitantly drive high levels of fatty-acid oxidation (FAO) and glycolysis and, consequently, ATP regeneration. FAMIN-dependent FAO controlled inflammasome activation, mitochondrial and NADPH-oxidase-dependent production of reactive oxygen species (ROS), and the bactericidal activity of macrophages. As p.I254V and p.C284R resulted in diminished function and loss of function, respectively, FAMIN determined resilience to endotoxin shock. Thus, we have identified a central regulator of the metabolic function and bioenergetic state of macrophages that is under evolutionary selection and determines the risk of inflammatory and infectious disease.


Assuntos
Artrite Juvenil/genética , Doença de Crohn/genética , Infecções/genética , Hanseníase/genética , Macrófagos/imunologia , Proteínas/genética , Choque Séptico/genética , Trifosfato de Adenosina/metabolismo , Animais , Bacteriólise , Células Cultivadas , Metabolismo Energético , Ácido Graxo Sintase Tipo I/metabolismo , Predisposição Genética para Doença , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/metabolismo , Oxirredução , Polimorfismo de Nucleotídeo Único , Risco
7.
Cell ; 154(2): 452-64, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23870131

RESUMO

Mutations in whole organisms are powerful ways of interrogating gene function in a realistic context. We describe a program, the Sanger Institute Mouse Genetics Project, that provides a step toward the aim of knocking out all genes and screening each line for a broad range of traits. We found that hitherto unpublished genes were as likely to reveal phenotypes as known genes, suggesting that novel genes represent a rich resource for investigating the molecular basis of disease. We found many unexpected phenotypes detected only because we screened for them, emphasizing the value of screening all mutants for a wide range of traits. Haploinsufficiency and pleiotropy were both surprisingly common. Forty-two percent of genes were essential for viability, and these were less likely to have a paralog and more likely to contribute to a protein complex than other genes. Phenotypic data and more than 900 mutants are openly available for further analysis. PAPERCLIP:


Assuntos
Técnicas Genéticas , Camundongos Knockout , Fenótipo , Animais , Doença/genética , Modelos Animais de Doenças , Feminino , Genes Essenciais , Estudo de Associação Genômica Ampla , Masculino , Camundongos
8.
Cell ; 137(7): 1235-46, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19563756

RESUMO

Substantial evidence suggests that chromosomal abnormalities contribute to the risk of autism. The duplication of human chromosome 15q11-13 is known to be the most frequent cytogenetic abnormality in autism. We have modeled this genetic change in mice by using chromosome engineering to generate a 6.3 Mb duplication of the conserved linkage group on mouse chromosome 7. Mice with a paternal duplication display poor social interaction, behavioral inflexibility, abnormal ultrasonic vocalizations, and correlates of anxiety. An increased MBII52 snoRNA within the duplicated region, affecting the serotonin 2c receptor (5-HT2cR), correlates with altered intracellular Ca(2+) responses elicited by a 5-HT2cR agonist in neurons of mice with a paternal duplication. This chromosome-engineered mouse model for autism seems to replicate various aspects of human autistic phenotypes and validates the relevance of the human chromosome abnormality. This model will facilitate forward genetics of developmental brain disorders and serve as an invaluable tool for therapeutic development.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Comportamento Animal , Cromossomos Humanos Par 15 , Modelos Animais de Doenças , Animais , Cromossomos de Mamíferos , Expressão Gênica , Humanos , Relações Interpessoais , Masculino , Camundongos , Neurônios/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Teste de Desempenho do Rota-Rod , Transdução de Sinais
9.
Nature ; 554(7690): 62-68, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364867

RESUMO

The poor correlation of mutational landscapes with phenotypes limits our understanding of the pathogenesis and metastasis of pancreatic ductal adenocarcinoma (PDAC). Here we show that oncogenic dosage-variation has a critical role in PDAC biology and phenotypic diversification. We find an increase in gene dosage of mutant KRAS in human PDAC precursors, which drives both early tumorigenesis and metastasis and thus rationalizes early PDAC dissemination. To overcome the limitations posed to gene dosage studies by the stromal richness of PDAC, we have developed large cell culture resources of metastatic mouse PDAC. Integration of cell culture genomes, transcriptomes and tumour phenotypes with functional studies and human data reveals additional widespread effects of oncogenic dosage variation on cell morphology and plasticity, histopathology and clinical outcome, with the highest KrasMUT levels underlying aggressive undifferentiated phenotypes. We also identify alternative oncogenic gains (Myc, Yap1 or Nfkb2), which collaborate with heterozygous KrasMUT in driving tumorigenesis, but have lower metastatic potential. Mechanistically, different oncogenic gains and dosages evolve along distinct evolutionary routes, licensed by defined allelic states and/or combinations of hallmark tumour suppressor alterations (Cdkn2a, Trp53, Tgfß-pathway). Thus, evolutionary constraints and contingencies direct oncogenic dosage gain and variation along defined routes to drive the early progression of PDAC and shape its downstream biology. Our study uncovers universal principles of Ras-driven oncogenesis that have potential relevance beyond pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Evolução Molecular , Dosagem de Genes , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Animais , Carcinogênese/genética , Proteínas de Ciclo Celular , Inibidor p16 de Quinase Dependente de Ciclina/genética , Progressão da Doença , Feminino , Genes myc , Genes p53 , Humanos , Masculino , Camundongos , Mutação , Subunidade p52 de NF-kappa B/genética , Metástase Neoplásica/genética , Proteínas Nucleares/genética , Fenótipo , Fosfoproteínas/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Fator de Crescimento Transformador beta1/genética , Proteínas de Sinalização YAP
10.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753502

RESUMO

Genetic variation within the factor H-related (FHR) genes is associated with the complement-mediated kidney disease, C3 glomerulopathy (C3G). There is no definitive treatment for C3G, and a significant proportion of patients develop end-stage renal disease. The prototypical example is CFHR5 nephropathy, through which an internal duplication within a single CFHR5 gene generates a mutant FHR5 protein (FHR5mut) that leads to accumulation of complement C3 within glomeruli. To elucidate how abnormal FHR proteins cause C3G, we modeled CFHR5 nephropathy in mice. Animals lacking the murine factor H (FH) and FHR proteins, but coexpressing human FH and FHR5mut (hFH-FHR5mut), developed glomerular C3 deposition, whereas mice coexpressing human FH with the normal FHR5 protein (hFH-FHR5) did not. Like in patients, the FHR5mut had a dominant gain-of-function effect, and when administered in hFH-FHR5 mice, it triggered C3 deposition. Importantly, adeno-associated virus vector-delivered homodimeric mini-FH, a molecule with superior surface C3 binding compared to FH, reduced glomerular C3 deposition in the presence of the FHR5mut. Our data demonstrate that FHR5mut causes C3G by disrupting the homeostatic regulation of complement within the kidney and is directly pathogenic in C3G. These results support the use of FH-derived molecules with enhanced C3 binding for treating C3G associated with abnormal FHR proteins. They also suggest that targeting FHR5 represents a way to treat complement-mediated kidney injury.


Assuntos
Complemento C3/metabolismo , Proteínas do Sistema Complemento/genética , Mutação com Ganho de Função , Glomerulonefrite/genética , Glomerulonefrite/metabolismo , Glomérulos Renais/patologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fatores Sexuais
11.
PLoS Genet ; 16(1): e1008577, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31929527

RESUMO

Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice.


Assuntos
Ritmo Circadiano/genética , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Receptores de Ocitocina/genética , Proteínas Repressoras/genética , Serina Endopeptidases/genética , Proteínas de Ligação a Telômeros/genética , Complexos Ubiquitina-Proteína Ligase/genética
12.
PLoS Pathog ; 16(3): e1008373, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150583

RESUMO

Lasting protection has long been a goal for malaria vaccines. The major surface antigen on Plasmodium falciparum sporozoites, the circumsporozoite protein (PfCSP), has been an attractive target for vaccine development and most protective antibodies studied to date interact with the central NANP repeat region of PfCSP. However, it remains unclear what structural and functional characteristics correlate with better protection by one antibody over another. Binding to the junctional region between the N-terminal domain and central NANP repeats has been proposed to result in superior protection: this region initiates with the only NPDP sequence followed immediately by NANP. Here, we isolated antibodies in Kymab mice immunized with full-length recombinant PfCSP and two protective antibodies were selected for further study with reactivity against the junctional region. X-ray and EM structures of two monoclonal antibodies, mAb667 and mAb668, shed light on their differential affinity and specificity for the junctional region. Importantly, these antibodies also bind to the NANP repeat region with equal or better affinity. A comparison with an NANP-only binding antibody (mAb317) revealed roughly similar but statistically distinct levels of protection against sporozoite challenge in mouse liver burden models, suggesting that junctional antibody protection might relate to the ability to also cross-react with the NANP repeat region. Our findings indicate that additional efforts are necessary to isolate a true junctional antibody with no or much reduced affinity to the NANP region to elucidate the role of the junctional epitope in protection.


Assuntos
Anticorpos Monoclonais Murinos/química , Anticorpos Antiprotozoários/química , Sítios de Ligação de Anticorpos , Epitopos/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antiprotozoários/imunologia , Epitopos/imunologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Relação Estrutura-Atividade
13.
Blood ; 134(4): 383-388, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31186273

RESUMO

Activating mutations in FMS-like tyrosine kinase receptor-3 (FLT3) and Nucleophosmin-1 (NPM1) are most frequent alterations in acute myeloid leukemia (AML), and are often coincidental. The mutational status of NPM1 has strong prognostic relevance to patients with point mutations of the FLT3 tyrosine kinase domain (TKD), but the biological mechanism underlying this effect remains unclear. In the present study, we investigated the effect of the coincidence of NPM1c and FLT3-TKD. Although expression of FLT3-TKD is not sufficient to induce a disease in mice, coexpression with NPM1c rapidly leads to an aggressive myeloproliferative disease in mice with a latency of 31.5 days. Mechanistically, we could show that FLT3-TKD is able to activate the downstream effector molecule signal transducer and activator of transcription 5 (STAT5) exclusively in the presence of mutated NPM1c. Moreover, NPM1c alters the cellular localization of FLT3-TKD from the cell surface to the endoplasmic reticulum, which might thereby lead to the aberrant STAT5 activation. Importantly, aberrant STAT5 activation occurs not only in primary murine cells but also in patients with AML with combined FLT3-TKD and NPM1c mutations. Thus, our data indicate a new mechanism, how NPM1c mislocalizes FLT3-TKD and changes its signal transduction ability.


Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Proteínas Nucleares/genética , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Duplicação Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Nucleofosmina , Transporte Proteico , Fator de Transcrição STAT5/metabolismo , Sequências de Repetição em Tandem
15.
Genes Dev ; 27(13): 1484-94, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23824539

RESUMO

In mammals, homologs that fail to synapse during meiosis are transcriptionally inactivated. This process, meiotic silencing, drives inactivation of the heterologous XY bivalent in male germ cells (meiotic sex chromosome inactivation [MSCI]) and is thought to act as a meiotic surveillance mechanism. The checkpoint protein ATM and Rad3-related (ATR) localizes to unsynapsed chromosomes, but its role in the initiation and maintenance of meiotic silencing is unknown. Here we show that ATR has multiple roles in silencing. ATR first regulates HORMA (Hop1, Rev7, and Mad2) domain protein HORMAD1/2 phosphorylation and localization of breast cancer I (BRCA1) and ATR cofactors ATR-interacting peptide (ATRIP)/topoisomerase 2-binding protein 1 (TOPBP1) at unsynapsed axes. Later, it acts as an adaptor, transducing signaling at unsynapsed axes into surrounding chromatin in a manner that requires interdependence with mediator of DNA damage checkpoint 1 (MDC1) and H2AFX. Finally, ATR catalyzes histone H2AFX phosphorylation, the epigenetic event leading to gene inactivation. Using a novel genetic strategy in which MSCI is used to silence a chosen gene in pachytene, we show that ATR depletion does not disrupt the maintenance of silencing and that silencing comprises two phases: The first is dynamic and reversible, and the second is stable and irreversible. Our work identifies a role for ATR in the epigenetic regulation of gene expression and presents a new technique for ablating gene function in the germline.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Meiose , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Cromossomos/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Fosforilação , Transporte Proteico/genética , Proteínas Repressoras/metabolismo
16.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32661121

RESUMO

Typhoid toxin is a virulence factor of Salmonella enterica serovar Typhi, the causative agent of typhoid fever, and is thought to be responsible for the symptoms of severe disease. This toxin has a unique A2B5 architecture with two active subunits, the ADP ribosyl transferase PltA and the DNase CdtB, linked to a pentameric B subunit, which is alternatively made of PltB or PltC. Here, we describe the generation and characterization of typhoid toxin-neutralizing human monoclonal antibodies by immunizing genetically engineered mice that have a full set of human immunoglobulin variable region genes. We identified several monoclonal antibodies with strong in vitro and in vivo toxin-neutralizing activity and different mechanisms of toxin neutralization. These antibodies could serve as the basis for the development of novel therapeutic strategies against typhoid fever.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes/imunologia , Toxinas Bacterianas/imunologia , Salmonella typhi/imunologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Linhagem Celular , Humanos , Camundongos , Camundongos Transgênicos , Testes de Neutralização , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Salmonella typhi/genética , Febre Tifoide/prevenção & controle
17.
EMBO J ; 35(21): 2285-2300, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27558554

RESUMO

Aneuploidy leads to severe developmental defects in mammals and is also a hallmark of cancer. However, whether aneuploidy is a driving cause or a consequence of tumor formation remains controversial. Paradoxically, existing studies based on aneuploid yeast and mouse fibroblasts have shown that aneuploidy is usually detrimental to cellular fitness. Here, we examined the effects of aneuploidy on mouse embryonic stem (ES) cells by generating a series of cell lines that each carries an extra copy of single chromosomes, including trisomy 6, 8, 11, 12, or 15. Most of these aneuploid cell lines had rapid proliferation rates and enhanced colony formation efficiencies. They were less dependent on growth factors for self-renewal and showed a reduced capacity to differentiate in vitro Moreover, trisomic stem cells formed teratomas more efficiently, from which undifferentiated cells can be recovered. Further investigations demonstrated that co-culture of wild-type and aneuploid ES cells or supplementation with extracellular BMP4 rescues the differentiation defects of aneuploid ES cells.


Assuntos
Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Células-Tronco Embrionárias/fisiologia , Teratoma/genética , Trissomia , Animais , Linhagem Celular , Masculino , Camundongos SCID , Transplante de Células-Tronco , Teratoma/patologia , Transcriptoma , Carga Tumoral
18.
Blood ; 130(17): 1911-1922, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28835438

RESUMO

NPM1 mutations define the commonest subgroup of acute myeloid leukemia (AML) and frequently co-occur with FLT3 internal tandem duplications (ITD) or, less commonly, NRAS or KRAS mutations. Co-occurrence of mutant NPM1 with FLT3-ITD carries a significantly worse prognosis than NPM1-RAS combinations. To understand the molecular basis of these observations, we compare the effects of the 2 combinations on hematopoiesis and leukemogenesis in knock-in mice. Early effects of these mutations on hematopoiesis show that compound Npm1cA/+;NrasG12D/+ or Npm1cA;Flt3ITD share a number of features: Hox gene overexpression, enhanced self-renewal, expansion of hematopoietic progenitors, and myeloid differentiation bias. However, Npm1cA;Flt3ITD mutants displayed significantly higher peripheral leukocyte counts, early depletion of common lymphoid progenitors, and a monocytic bias in comparison with the granulocytic bias in Npm1cA/+;NrasG12D/+ mutants. Underlying this was a striking molecular synergy manifested as a dramatically altered gene expression profile in Npm1cA;Flt3ITD , but not Npm1cA/+;NrasG12D/+ , progenitors compared with wild-type. Both double-mutant models developed high-penetrance AML, although latency was significantly longer with Npm1cA/+;NrasG12D/+ During AML evolution, both models acquired additional copies of the mutant Flt3 or Nras alleles, but only Npm1cA/+;NrasG12D/+ mice showed acquisition of other human AML mutations, including IDH1 R132Q. We also find, using primary Cas9-expressing AMLs, that Hoxa genes and selected interactors or downstream targets are required for survival of both types of double-mutant AML. Our results show that molecular complementarity underlies the higher frequency and significantly worse prognosis associated with NPM1c/FLT3-ITD vs NPM1/NRAS-G12D-mutant AML and functionally confirm the role of HOXA genes in NPM1c-driven AML.


Assuntos
Leucemia Mieloide Aguda/genética , Mutação/genética , Proteínas Nucleares/genética , Alelos , Animais , Diferenciação Celular , Autorrenovação Celular , Sobrevivência Celular/genética , Progressão da Doença , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Células-Tronco Multipotentes/metabolismo , Mielopoese , Proteínas Nucleares/metabolismo , Nucleofosmina , Penetrância , Fenótipo , Fatores de Transcrição/genética , Transcriptoma/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
20.
PLoS Genet ; 12(4): e1005932, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27054363

RESUMO

The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50-70 de novo single nucleotide variants (SNVs) between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs), their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer.


Assuntos
Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Adulto , Células Cultivadas , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA