RESUMO
Global demand for safe and sustainable water supplies necessitates a better understanding of contaminant exposures in potential reuse waters. In this study, we compared exposures and load contributions to surface water from the discharge of three reuse waters (wastewater effluent, urban stormwater, and agricultural runoff). Results document substantial and varying organic-chemical contribution to surface water from effluent discharges (e.g., disinfection byproducts [DBP], prescription pharmaceuticals, industrial/household chemicals), urban stormwater (e.g., polycyclic aromatic hydrocarbons, pesticides, nonprescription pharmaceuticals), and agricultural runoff (e.g., pesticides). Excluding DBPs, episodic storm-event organic concentrations and loads from urban stormwater were comparable to and often exceeded those of daily wastewater-effluent discharges. We also assessed if wastewater-effluent irrigation to corn resulted in measurable effects on organic-chemical concentrations in rain-induced agricultural runoff and harvested feedstock. Overall, the target-organic load of 491 g from wastewater-effluent irrigation to the study corn field during the 2019 growing season did not produce substantial dissolved organic-contaminant contributions in subsequent rain-induced runoff events. Out of the 140 detected organics in source wastewater-effluent irrigation, only imidacloprid and estrone had concentrations that resulted in observable differences between rain-induced agricultural runoff from the effluent-irrigated and nonirrigated corn fields. Analyses of pharmaceuticals and per-/polyfluoroalkyl substances in at-harvest corn-plant samples detected two prescription antibiotics, norfloxacin and ciprofloxacin, at concentrations of 36 and 70 ng/g, respectively, in effluent-irrigated corn-plant samples; no contaminants were detected in noneffluent irrigated corn-plant samples.
RESUMO
Process wastewaters from food, beverage, and feedstock facilities, although regulated, are an under-investigated environmental contaminant source. Food process wastewaters (FPWWs) from 23 facilities in 17 U.S. states were sampled and documented for a plethora of chemical and microbial contaminants. Of the 576 analyzed organics, 184 (32%) were detected at least once, with concentrations as large as 143 µg L-1 (6:2 fluorotelomer sulfonic acid), and as many as 47 were detected in a single FPWW sample. Cumulative per/polyfluoroalkyl substance concentrations up to 185 µg L-1 and large pesticide transformation product concentrations (e.g., methomyl oxime, 40 µg L-1; clothianidin TMG, 2.02 µg L-1) were observed. Despite 48% of FPWW undergoing disinfection treatment prior to discharge, bacteria resistant to third-generation antibiotics were found in each facility type, and multiple bacterial groups were detected in all samples, including total coliforms. The exposure-activity ratios and toxicity quotients exceeded 1.0 in 13 and 22% of samples, respectively, indicating potential biological effects and toxicity to vertebrates and invertebrates associated with the discharge of FPWW. Organic contaminant profiles of FPWW differed from previously reported contaminant profiles of municipal effluents and urban storm water, indicating that FPWW is another important source of chemical and microbial contaminant mixtures discharged into receiving surface waters.
Assuntos
Rios , Poluentes Químicos da Água , Animais , Bebidas , Monitoramento Ambiental , Rios/química , Águas Residuárias/química , Poluentes Químicos da Água/toxicidadeRESUMO
Improved analytical methods can quantify hundreds of pesticide transformation products (TPs), but understanding of TP occurrence and potential toxicity in aquatic ecosystems remains limited. We quantified 108 parent pesticides and 116 TPs in more than 3â¯700 samples from 442 small streams in mostly urban basins across five major regions of the United States. TPs were detected nearly as frequently as parents (90 and 95% of streams, respectively); 102 TPs were detected at least once and 28 were detected in >20% samples in at least one region-TPs of 9 herbicides, 2 fungicides (chlorothalonil and thiophanate-methyl), and 1 insecticide (fipronil) were the most frequently detected. TPs occurred commonly during baseflow conditions, indicating chronic environmental TP exposures to aquatic organisms and the likely importance of groundwater as a TP source. Hazard quotients based on acute aquatic-life benchmarks for invertebrates and nonvascular plants and vertebrate-centric molecular endpoints (sublethal effects) quantify the range of the potential contribution of TPs to environmental risk and highlight several TP exposure-response data gaps. A precautionary approach using equimolar substitution of parent benchmarks or endpoints for missing TP benchmarks indicates that potential aquatic effects of pesticide TPs could be underestimated by an order of magnitude or more.
Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Praguicidas/análise , Rios , Estados Unidos , Poluentes Químicos da Água/análiseRESUMO
Surface waters often contain a variety of chemical contaminants potentially capable of producing adverse outcomes in both humans and wildlife due to impacts from industrial, urban, and agricultural activity. Here, we report the results of a zebrafish liver (ZFL) cell-based lipidomics approach to assess the potential ecotoxicological effects of complex contaminant mixtures using water collected from eight impacted streams across the United States mainland and Puerto Rico. We initially characterized the ZFL lipidome using high resolution mass spectrometry, resulting in the annotation of 508 lipid species covering 27 classes. We then identified lipid changes induced by all streamwater samples (nonspecific stress indicators) as well as those unique to water samples taken from specific streams. Subcellular impacts were classified based on organelle-specific lipid changes, including increased lipid saturation (endoplasmic reticulum stress), elevated bis(monoacylglycero)phosphate (lysosomal overload), decreased ubiquinone (mitochondrial dysfunction), and elevated ether lipids (peroxisomal stress). Finally, we demonstrate how these results can uniquely inform environmental monitoring and risk assessments of surface waters.
Assuntos
Rios , Poluentes Químicos da Água , Animais , Misturas Complexas , Humanos , Lipidômica , Fígado/química , Porto Rico , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-ZebraRESUMO
Arsenic from geologic sources is widespread in groundwater within the United States (U.S.). In several areas, groundwater arsenic concentrations exceed the U.S. Environmental Protection Agency maximum contaminant level of 10 µg per liter (µg/L). However, this standard applies only to public-supply drinking water and not to private-supply, which is not federally regulated and is rarely monitored. As a result, arsenic exposure from private wells is a potentially substantial, but largely hidden, public health concern. Machine learning models using boosted regression trees (BRT) and random forest classification (RFC) techniques were developed to estimate probabilities and concentration ranges of arsenic in private wells throughout the conterminous U.S. Three BRT models were fit separately to estimate the probability of private well arsenic concentrations exceeding 1, 5, or 10 µg/L whereas the RFC model estimates the most probable category (≤5, >5 to ≤10, or >10 µg/L). Overall, the models perform best at identifying areas with low concentrations of arsenic in private wells. The BRT 10 µg/L model estimates for testing data have an overall accuracy of 91.2%, sensitivity of 33.9%, and specificity of 98.2%. Influential variables identified across all models included average annual precipitation and soil geochemistry. Models were developed in collaboration with public health experts to support U.S.-based studies focused on health effects from arsenic exposure.
Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental , Humanos , Aprendizado de Máquina , Estados Unidos , Poluentes Químicos da Água/análise , Abastecimento de Água , Poços de ÁguaRESUMO
Monitoring of the Colorado River near the Moab, Utah, wastewater treatment plant (WWTP) outflow has detected pharmaceuticals, hormones, and estrogen-receptor (ER)-, glucocorticoid receptor (GR)-, and peroxisome proliferator-activated receptor-gamma (PPARγ)-mediated biological activities. The aim of the present multi-year study was to assess effects of a WWTP replacement on bioactive chemical (BC) concentrations. Water samples were collected bimonthly, pre- and post-replacement, at 11 sites along the Colorado River upstream and downstream of the WWTP and analyzed for in vitro bioactivities (e.g., agonism of ER, GR, and PPARγ) and BC concentrations; fathead minnows were cage deployed pre- and post-replacement at sites with varying proximities to the WWTP. Before the WWTP replacement, in vitro ER (24 ng 17ß-estradiol equivalents/L)-, GR (60 ng dexamethasone equivalents/L)-, and PPARγ-mediated activities were detected at the WWTP outflow but diminished downstream. In March 2018, the WWTP effluent was acutely toxic to the fish, likely due to elevated ammonia concentrations. Following the WWTP replacement, ER, GR, and PPARγ bioactivities were reduced by approximately 60-79%, no toxicity was observed in caged fish, and there were marked decreases in concentrations of many BCs. Results suggest that replacement of the Moab WWTP achieved a significant reduction in BC concentrations to the Colorado River.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Colorado , Monitoramento Ambiental , Utah , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análiseRESUMO
Mercury (Hg) is a global pollutant that affects biota in remote settings due to atmospheric deposition of inorganic Hg, and its conversion to methylmercury (MeHg), the bioaccumulating and toxic form. Characterizing biotic MeHg is important for evaluating aquatic ecosystem responses to changes in Hg inputs. Aquatic insects possess many qualities desired for MeHg biomonitoring, but are not widely used, largely because of limited information regarding percentages of total mercury (THg) composed of MeHg (i.e., MeHg%) in various taxa. Here, we examine taxonomic, spatial, and seasonal variation in MeHg% of stream-dwelling predator and primary-consumer insects from nine streams in the Adirondack region (NY, USA). Predator MeHg% was high (median 94%) and did not differ significantly among five taxa. MeHg% in selected dragonflies (the most abundant predators, Odonata: Aeshnidae and Libellulidae) exhibited little seasonal and spatial variation, and THg concentration was strongly correlated with aqueous (filtered) MeHg (FMeHg; rs = 0.76). In contrast, MeHg% in primary consumers-shredders (northern caddisflies [Trichoptera: Limnephilidae]) and scrapers (flathead mayflies [Ephemeroptera: Heptageniidae]), were lower (medians 52% and 35%, respectively), and differed significantly between taxa, among sites, and seasonally. Correlations of THg with FMeHg were weak (shredders, rs = 0.45, p = 0.09) or not significant (scrapers, p = 0.89). The higher MeHg% of predators corresponded with their higher trophic positions (indicated by nitrogen stable isotopes). Results suggest obligate predators hold the most promise for the use of THg as a surrogate for MeHg biomonitoring with aquatic insects within the Adirondack region.
Assuntos
Monitoramento Ambiental , Insetos , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Biota , Ecossistema , Ephemeroptera , Cadeia Alimentar , Compostos de Metilmercúrio , Isótopos de Nitrogênio , Odonatos , RiosRESUMO
The U.S. Geological Survey and the U.S. Environmental Protection Agency have assessed contaminants in 38 streams across the U.S., using an extensive suite of target-chemical analysis methods along with a variety of biological effects tools. Here, we report zebrafish liver (ZFL) cell-culture based NMR metabolomic analysis of these split stream samples. We used this untargeted approach to evaluate the sites according to overall impact on the ZFL metabolome and found that neither the total number of organics detected at the sites, nor their cumulative concentrations, were good predictors of these impacts. Further, we used partial least squares regression to compare ZFL endogenous metabolite profiles to values for 455 potential stressors (organics, inorganics, and physical properties) measured in these waters and found that the profiles covaried with at most 280 of the stressors, which were subsequently ranked into quartiles based on the strength of their covariance. While contaminants of emerging concern (CECs) were well represented in the top, most strongly covarying quartile-suggesting considerable potential for eliciting biological responses at these sites-there was even higher representation of various well-characterized legacy contaminants (e.g., PCBs). These results emphasize the importance of complementing chemical analysis with untargeted bioassays to help focus regulatory efforts on the most significant ecosystem threats.
Assuntos
Rios , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Metabolômica , Estados UnidosRESUMO
While chemical analysis of contaminant mixtures remains an essential component of environmental monitoring, bioactivity-based assessments using in vitro systems increasingly are used in the detection of biological effects. Historically, in vitro assessments focused on a few biological pathways, for example, aryl hydrocarbon receptor (AhR) or estrogen receptor (ER) activities. High-throughput screening (HTS) technologies have greatly increased the number of biological targets and processes that can be rapidly assessed. Here we screened extracts of surface waters from a nationwide survey of United States streams for bioactivities associated with 69 different end points using two multiplexed HTS assays. Bioactivity of extracts from 38 streams was evaluated and compared with concentrations of over 700 analytes to identify chemicals contributing to observed effects. Eleven primary biological end points were detected. Pregnane X receptor (PXR) and AhR-mediated activities were the most commonly detected. Measured chemicals did not completely account for AhR and PXR responses. Surface waters with AhR and PXR effects were associated with low intensity, developed land cover. Likewise, elevated bioactivities frequently associated with wastewater discharges included endocrine-related end points ER and glucocorticoid receptor. These results underscore the value of bioassay-based monitoring of environmental mixtures for detecting biological effects that could not be ascertained solely through chemical analyses.
Assuntos
Rios , Poluentes Químicos da Água , Misturas Complexas , Monitoramento Ambiental , Inquéritos e Questionários , Estados UnidosRESUMO
In a recent U.S. Geological Survey/U.S. Environmental Protection Agency study assessing more than 700 organic compounds in 38 streams, in vitro assays indicated generally low estrogen, androgen, and glucocorticoid receptor activities, with 13 surface waters with 17ß-estradiol-equivalent (E2Eq) activities greater than a 1-ng/L estimated effects-based trigger value for estrogenic effects in male fish. Among the 36 samples assayed for mutagenicity in the Salmonella bioassay (reported here), 25% had low mutagenic activity and 75% were not mutagenic. Endocrine and mutagenic activities of the water samples were well correlated with each other and with the total number and cumulative concentrations of detected chemical contaminants. To test the predictive utility of knowledge-base-leveraging approaches, site-specific predicted chemical-gene (pCGA) and predicted analogous pathway-linked (pPLA) association networks identified in the Comparative Toxicogenomics Database were compared with observed endocrine/mutagenic bioactivities. We evaluated pCGA/pPLA patterns among sites by cluster analysis and principal component analysis and grouped the pPLA into broad mode-of-action classes. Measured E2eq and mutagenic activities correlated well with predicted pathways. The pPLA analysis also revealed correlations with signaling, metabolic, and regulatory groups, suggesting that other effects pathways may be associated with chemical contaminants in these waters and indicating the need for broader bioassay coverage to assess potential adverse impacts.
Assuntos
Rios , Poluentes Químicos da Água , Animais , Bioensaio , Monitoramento Ambiental , Estrogênios , Masculino , Testes de Mutagenicidade , MutagênicosRESUMO
Increasing global reliance on stormwater control measures to reduce discharge to surface water, increase groundwater recharge, and minimize contaminant delivery to receiving waterbodies necessitates improved understanding of stormwater-contaminant profiles. A multiagency study of organic and inorganic chemicals in urban stormwater from 50 runoff events at 21 sites across the United States demonstrated that stormwater transports substantial mixtures of polycyclic aromatic hydrocarbons, bioactive contaminants (pesticides and pharmaceuticals), and other organic chemicals known or suspected to pose environmental health concern. Numerous organic-chemical detections per site (median number of chemicals detected = 73), individual concentrations exceeding 10â¯000 ng/L, and cumulative concentrations up to 263â¯000 ng/L suggested concern for potential environmental effects during runoff events. Organic concentrations, loads, and yields were positively correlated with impervious surfaces and highly developed urban catchments. Episodic storm-event organic concentrations and loads were comparable to and often exceeded those of daily wastewater plant discharges. Inorganic chemical concentrations were generally dilute in concentration and did not exceed chronic aquatic life criteria. Methylmercury was measured in 90% of samples with concentrations that ranged from 0.05 to 1.0 ng/L.
Assuntos
Água Subterrânea , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Chuva , Estados UnidosRESUMO
Safe drinking water at the point-of-use (tapwater, TW) is a United States public health priority. Multiple lines of evidence were used to evaluate potential human health concerns of 482 organics and 19 inorganics in TW from 13 (7 public supply, 6 private well self-supply) home and 12 (public supply) workplace locations in 11 states. Only uranium (61.9 µg L-1, private well) exceeded a National Primary Drinking Water Regulation maximum contaminant level (MCL: 30 µg L-1). Lead was detected in 23 samples (MCL goal: zero). Seventy-five organics were detected at least once, with median detections of 5 and 17 compounds in self-supply and public supply samples, respectively (corresponding maxima: 12 and 29). Disinfection byproducts predominated in public supply samples, comprising 21% of all detected and 6 of the 10 most frequently detected. Chemicals designed to be bioactive (26 pesticides, 10 pharmaceuticals) comprised 48% of detected organics. Site-specific cumulative exposure-activity ratios (∑EAR) were calculated for the 36 detected organics with ToxCast data. Because these detections are fractional indicators of a largely uncharacterized contaminant space, ∑EAR in excess of 0.001 and 0.01 in 74 and 26% of public supply samples, respectively, provide an argument for prioritized assessment of cumulative effects to vulnerable populations from trace-level TW exposures.
Assuntos
Água Potável , Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Estados Unidos , Abastecimento de Água , Local de TrabalhoRESUMO
In vitro bioassays are sensitive, effect-based tools used to quantitatively screen for chemicals with nuclear receptor activity in environmental samples. We measured in vitro estrogen (ER), androgen (AR), and glucocorticoid receptor (GR) activity, along with a broad suite of chemical analytes, in streamwater from 35 well-characterized sites (3 reference and 32 impacted) across 24 states and Puerto Rico. ER agonism was the most frequently detected with nearly all sites (34/35) displaying activity (range, 0.054-116 ng E2Eq L-1). There was a strong linear relationship (r2 = 0.917) between in vitro ER activity and concentrations of steroidal estrogens after correcting for the in vitro potency of each compound. AR agonism was detected in 5/35 samples (range, 1.6-4.8 ng DHTEq L-1) but concentrations of androgenic compounds were largely unable to account for the in vitro activity. Similarly, GR agonism was detected in 9/35 samples (range, 6.0-43 ng DexEq L-1); however, none of the recognized GR-active compounds on the target-chemical analyte list were detected. The utility of in vitro assays in water quality monitoring was evident from both the quantitative agreement between ER activity and estrogen concentrations, as well as the detection of AR and GR activity for which there were limited or no corresponding target-chemical detections to explain the bioactivity. Incorporation of in vitro bioassays as complements to chemical analyses in standard water quality monitoring efforts would allow for more complete assessment of the chemical mixtures present in many surface waters.
Assuntos
Glucocorticoides , Rios , Bioensaio , Estrogênios , Receptores de Estrogênio/metabolismo , Estados Unidos , Poluentes Químicos da ÁguaRESUMO
Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66-84% of all sites. Detected contaminant concentrations varied from less than 1 ng L-1 to greater than 10 µg L-1, with 77 and 278 having median detected concentrations greater than 100 ng L-1 and 10 ng L-1, respectively. Cumulative detections and concentrations ranged 4-161 compounds (median 70) and 8.5-102â¯847 ng L-1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71-82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001-0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at µg L-1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L-1.
Assuntos
Rios/química , Poluentes Químicos da Água , Clorpirifos/toxicidade , Monitoramento Ambiental , Praguicidas , Águas Residuárias/químicaRESUMO
Multistressor studies were performed in five regions of the United States to assess the role of pesticides as stressors affecting invertebrate communities in wadable streams. Pesticides and other chemical and physical stressors were measured in 75 to 99 streams per region for 4 weeks, after which invertebrate communities were surveyed (435 total sites). Pesticides were sampled weekly in filtered water, and once in bed sediment. The role of pesticides as a stressor to invertebrate communities was assessed by evaluating multiple lines of evidence: toxicity predictions based on measured pesticide concentrations, multivariate models and other statistical analyses, and previously published mesocosm experiments. Toxicity predictions using benchmarks and species sensitivity distributions and statistical correlations suggested that pesticides were present at high enough concentrations to adversely affect invertebrate communities at the regional scale. Two undirected techniques-boosted regression tree models and distance-based linear models-identified which pesticides were predictors of (respectively) invertebrate metrics and community composition. To put insecticides in context with known, influential covariates of invertebrate response, generalized additive models were used to identify which individual pesticide(s) were important predictors of invertebrate community condition in each region, after accounting for natural covariates. Four insecticides were identified as stressors to invertebrate communities at the regional scale: bifenthrin, chlordane, fipronil and its degradates, and imidacloprid. Fipronil was particularly important in the Southeast region, and imidacloprid, bifenthrin, and chlordane were important in multiple regions. For imidacloprid, bifenthrin, and fipronil, toxicity predictions were supported by mesocosm experiments that demonstrated adverse effects on naïve aquatic communities when dosed under controlled conditions. These multiple lines of evidence do not prove causality-which is challenging in the field under multistressor conditions-but they make a strong case for the role of insecticides as stressors adversely affecting invertebrate communities in streams within the five sampled regions.
Assuntos
Inseticidas , Neonicotinoides , Nitrocompostos , Praguicidas , Piretrinas , Poluentes Químicos da Água , Animais , Estados Unidos , Praguicidas/análise , Inseticidas/análise , Rios/química , Clordano/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , InvertebradosRESUMO
Large variations in redox-related water parameters, like pH and dissolved oxygen (DO), have been documented in New Hampshire (United States) drinking-water wells over the course of a few hours under pumping conditions. These findings suggest that comparable sub-daily variability in dissolved concentrations of redox-reactive and toxic arsenic (As) also may occur, representing a potentially critical public-health data gap and a fundamental challenge for long-term As-trends monitoring. To test this hypothesis, discrete groundwater As samples were collected approximately hourly during one day in May and again in August 2019 from three New Hampshire drinking-water wells (2 public-supply, 1 private) under active pumping conditions. Collected samples were assessed by laboratory analysis (total As [AsTot], As(III), As(V)) and by field analysis (AsTot) using a novel integrated biosensor system. Laboratory analysis revealed sub-daily variability (range) in AsTot concentrations equivalent to 16 % - 36 % of that observed in the antecedent 3-year bimonthly trend monitoring. Thus, the results indicated that, along with previously demonstrated seasonality effects, the timing and duration of pumping are important considerations when assessing trends in drinking-water As exposures and concomitant risks. Results also illustrated the utility of the field sensor for monitoring and management of AsTot exposures in near-real-time.
Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Estados Unidos , Poços de Água , Abastecimento de Água , New Hampshire , Arsênio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Potável/análiseRESUMO
Per- and polyfluoroalkyl substances (PFAS) are persistent chemicals of increasing concern to human health. PFAS contamination in water systems has been linked to a variety of sources including hydrocarbon fire suppression activities, industrial and military land uses, agricultural applications of biosolids, and consumer products. To assess PFAS in California tap water, we collected 60 water samples from inside homes in four different geographic regions, both urban and rural. We selected mostly small water systems with known history of industrial chemical or pesticide contamination and that served socioeconomically disadvantaged communities. Thirty percent of the tap water samples (18) had a detection of at least one of the 32 targeted PFAS and most detections (89 %) occurred in heavily industrialized Southeast Los Angeles (SELA). The residents of SELA are predominately Latino and low-income. Concentrations of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) ranged from 6.8 to 13.6 ng/L and 9.4-17.8 ng/L, respectively in SELA and were higher than State (PFOA: 0.007 ng/L; PFOS: 1.0 ng/L) and national health-based goals (zero). To look for geographic patterns, we mapped potential sources of PFAS contamination, such as chrome plating facilities, airports, landfills, and refineries, located near the SELA water systems; consistent with the multiple potential sources in the area, no clear spatial associations were observed. The results indicate the importance of systematic testing of PFAS in tap water, continued development of PFAS regulatory standards and advisories for a greater number of compounds, improved drinking-water treatments to mitigate potential health threats to communities, especially in socioeconomically disadvantaged and industrialized areas.
Assuntos
Ácidos Alcanossulfônicos , Água Potável , Monitoramento Ambiental , Fluorocarbonos , Poluentes Químicos da Água , Los Angeles , Poluentes Químicos da Água/análise , Água Potável/química , Fluorocarbonos/análise , Ácidos Alcanossulfônicos/análise , Caprilatos/análise , Abastecimento de ÁguaRESUMO
Per- and polyfluoroalkyl substances (PFAS), known colloquially as "forever chemicals", have been associated with adverse human health effects and have contaminated drinking water supplies across the United States owing to their long-term and widespread use. People in the United States may unknowingly be drinking water that contains PFAS because of a lack of systematic analysis, particularly in domestic water supplies. We present an extreme gradient boosting model for predicting the occurrence of PFAS in groundwater at the depths of drinking water supply for the conterminous United States. Our model results indicate that 71 to 95 million people in the conterminous United States potentially rely on groundwater with detectable concentrations of PFAS for their drinking-water supplies prior to any treatment.
RESUMO
The environmental ubiquity of tire and road wear particles (TRWP) underscores the need to understand the occurrence, persistence, and environmental effects of tire-related chemicals in aquatic ecosystems. One such chemical is 6PPD-quinone (6PPD-Q), a transformation product of the tire antioxidant 6PPD. In urban stormwater runoff 6PPD-Q can exceed acute toxicity thresholds for several salmonid species and is being implicated in significant coho salmon losses in the Pacific Northwest. There is a critical need to understand the prevalence of 6PPD-Q across watersheds to identify habitats heavily affected by TRWPs. We conducted a reconnaissance of 6PPD and 6PPD-Q in surface waters across the United States from sites (N = 94) with varying land use (urban, agricultural, and forested) and streamflow to better understand stream exposures. A rapid, low-volume direct-inject, liquid chromatography mass spectrometry method was developed for the quantitation of 6PPD-Q and screening for 6PPD. Laboratory holding times, bottle material, headspace, and filter materials were investigated to inform best practices for 6PPD-Q sampling and analysis. Glass bottles with PTFE-lined caps minimized sorption and borosilicate glass fiber filters provided the highest recovery. 6PPD-Q was stable for at least 5 months in pure laboratory solutions and for 75 days at 5 °C with minimal headspace in the investigated surface water and stormwaters. Results also indicated samples can be frozen to extend holding times. 6PPD was not detected in any of the 526 analyzed samples and there were no detections of 6PPD-Q at agricultural or forested sites. 6PPD-Q was frequently detected in stormwater (57%, N = 90) and from urban impacted sites (45%, N = 276) with concentrations ranging from 0.002 to 0.29 µg/L. The highest concentrations, above the lethal level for coho salmon, occurred during stormwater runoff events. This highlights the importance of capturing episodic runoff events in urban areas near ecologically relevant habitat or nursery grounds for sensitive species.
Assuntos
Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Rios/química , Estados Unidos , AnimaisRESUMO
The ICH S1B carcinogenicity global testing guideline has been recently revised with a novel addendum that describes a comprehensive integrated Weight of Evidence (WoE) approach to determine the need for a 2-year rat carcinogenicity study. In the present work, experts from different organizations have joined efforts to standardize as much as possible a procedural framework for the integration of evidence associated with the different ICH S1B(R1) WoE criteria. The framework uses a pragmatic consensus procedure for carcinogenicity hazard assessment to facilitate transparent, consistent, and documented decision-making and it discusses best-practices both for the organization of studies and presentation of data in a format suitable for regulatory review. First, it is acknowledged that the six WoE factors described in the addendum form an integrated network of evidence within a holistic assessment framework that is used synergistically to analyze and explain safety signals. Second, the proposed standardized procedure builds upon different considerations related to the primary sources of evidence, mechanistic analysis, alternative methodologies and novel investigative approaches, metabolites, and reliability of the data and other acquired information. Each of the six WoE factors is described highlighting how they can contribute evidence for the overall WoE assessment. A suggested reporting format to summarize the cross-integration of evidence from the different WoE factors is also presented. This work also notes that even if a 2-year rat study is ultimately required, creating a WoE assessment is valuable in understanding the specific factors and levels of human carcinogenic risk better than have been identified previously with the 2-year rat bioassay alone.