Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(26): 17648-17657, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29931023

RESUMO

Atomistic molecular dynamics simulations are used to study the self-assembly and friction of glycerol monooleate mixed with oleic acid, glycerol, calcium oleate, or water in n-heptane and toluene solvents. The aim is to determine how chemical degradation products of glycerol monooleate could lead to changes in structural and frictional properties. In bulk solution, almost all mixtures studied contain self-assembled reverse micelles. Under confinement between sheared mica surfaces, the reverse micelles disintegrate, but the distribution of molecules between the surfaces and the centre of the fluid layer depends sensitively on the chemical composition, with more polar mixtures showing stronger adsorption. The measured kinetic friction coefficient is correlated with the extent of surface adsorption: while degradation products lead to increases in the friction coefficient in most cases, all changes are more pronounced when there is less surface adsorption.

2.
Langmuir ; 32(31): 7707-18, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27429247

RESUMO

The structure and frictional properties of glycerol monooleate (GMO) in organic solvents, with and without water impurity, confined and sheared between two mica surfaces are examined using molecular dynamics simulations. The structure of the fluid is characterized in various ways, and the differences between systems with nonaggregated GMO and with preformed GMO reverse micelles are examined. Preformed reverse micelles are metastable under static conditions in all systems. In n-heptane under shear conditions, with or without water, preformed GMO reverse micelles remain intact and adsorb onto one surface or another, becoming surface micelles. In dry toluene, preformed reverse micelles break apart under shear, while in the presence of water, the reverse micelles survive and become surface micelles. In all systems under static and shear conditions, nonaggregated GMO adsorbs onto both surfaces with roughly equal probability. Added water is strongly associated with the GMO, irrespective of shear or the form of the added GMO. In all cases, with increasing shear rate, the GMO molecules flatten on the surface, and the kinetic friction coefficient increases. Under low-shear conditions, the friction is insensitive to the form of the GMO added, whereas the presence of water is found to lead to a small reduction in friction. Under high-shear conditions, the presence of reverse micelles leads to a significant reduction in friction, whereas the presence of water increases the friction in n-heptane and decreases the friction in toluene.

3.
J Phys Chem B ; 119(11): 4321-31, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25721707

RESUMO

The formation of glycerol monooleate reverse micelles in n-heptane and toluene at room temperature is studied using molecular-dynamics simulations and small-angle neutron scattering. The glycerol monooleate concentrations under consideration are in the range of 5-20 wt %. Under these conditions, spontaneous reverse-micelle formation is observed on the simulation timescale (up to 30 ns). From simulations, the typical dimensions (semiaxes) of the equivalent ellipsoids with the same masses and moments of inertia are in the range of 15-23 Å, with instantaneous shapes that are slightly nonspherical. By analyzing the scattering form factors from simulation and experiment, the radii of gyration of the reverse micelles are determined to be approximately 15 Å. The number of glycerol monooleate molecules in a reverse micelle is smaller in toluene (∼20) than in n-heptane (∼30), but the overall dimensions are similar due to greater penetration of the toluene in to the reverse micelle. The effects of low concentrations (1 wt %) of water, acetic acid, and ethanol on the reverse-micelle dimensions are determined. The overall structural effects are small, but the distributions of the molecules within the reverse micelles are shown to be sensitive to the molecular polarity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA