Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Sensors (Basel) ; 22(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35808191

RESUMO

Pseudomonas aeruginosa is a ubiquitously distributed soil and water bacterium and is considered an opportunistic pathogen in hospitals. In cystic fibrosis patients, for example, infections with P. aeruginosa can be severe and often lead to chronic or even fatal pneumonia. Therefore, rapid detection and further identification are of major importance in hospital hygiene and infection control. This work shows the electrochemical properties of five P. aeruginosa key metabolites considering their potential use as specific signaling agents in an electrochemical sensor system. The pure solutes of pyocyanin (PYO), Pseudomonas quinolone signal (PQS), pyochelin (PCH), 2-heptyl-4-hydroxyquinoline (HHQ), and 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) were analyzed by different electrochemical techniques (cyclic and square wave voltammetry) and measured using a Gamry Reference 600+ potentiostat. Screen-printed electrodes (DropSens DRP110; carbon working and counter, silver reference electrode) were used to determine signal specificities, detection limits, as well as pH dependencies of the substances. All of the compounds were electrochemically inducible with well-separated oxidation and/or reduction peaks at specific peak potentials relative to the reference electrode. Additionally, all analytes exhibited linear concentration dependency in ranges classically reported in the literature. The demonstration of these properties is a promising step toward direct multiplexed detection of P. aeruginosa in environmental and clinical samples and thus, can make a significant contribution to public health and safety.


Assuntos
Fibrose Cística , Pseudomonas aeruginosa , Fibrose Cística/microbiologia , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Pseudomonas aeruginosa/química , Piocianina
2.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638795

RESUMO

Liposome size and in vitro release of the active substance belong to critical quality attributes of liposomal carriers. Here, we apply asymmetric flow field-flow fractionation (AF4) to characterize theranostic liposomes prepared by thin lipid film hydration/extrusion or microfluidics. The vesicles' size was derived from multi-angle laser light scattering following fractionation (AF4) and compared to sizes derived from dynamic light scattering measurements. Additionally, we adapted a previously developed AF4 method to study zinc phthalocyanine (ZnPc) release/transfer from theranostic liposomes. To this end, theranostic liposomes were incubated with large acceptor liposomes serving as a sink (mimicking biological sinks) and were subsequently separated by AF4. During incubation, ZnPc was transferred from donor to acceptor fraction until reaching equilibrium. The process followed first-order kinetics with half-lives between 119.5-277.3 min, depending on the formulation. The release mechanism was postulated to represent a combination of Fickian diffusion and liposome relaxation. The rate constant of the transfer was proportional to the liposome size and inversely proportional to the ZnPc/POPC molar ratio. Our results confirm the usefulness of AF4 based method to study in vitro release/transfer of lipophilic payload, which may be useful to estimate the unwanted loss of drug from the liposomal carrier in vivo.


Assuntos
Liberação Controlada de Fármacos , Isoindóis/farmacocinética , Lipossomos , Microfluídica , Compostos Organometálicos/farmacocinética , Compostos de Zinco/farmacocinética , Fracionamento por Campo e Fluxo , Cinética , Tamanho da Partícula , Medicina de Precisão
3.
Pharm Res ; 37(6): 93, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32394114

RESUMO

PURPOSE: Here, first experiences with a prototype tool for high throughput (passive) permeability profiling, a 96-well plate comprising the Permeapad® membrane, are reported. The permeabilities of a set of drugs were determined and compared to published measures of oral absorption, such as human fraction absorbed (Fa) and in vitro permeability values obtained using other tools. METHODS: The tool consists of a 96-well bottom and screen plate with the artificial, phospholipid-based barrier (Permeapad®) mounted between the plates' lower and upper compartments. The permeability of 14 model compounds including high- and low-absorption drugs, cationic, anionic, zwitterionic and neutral molecules, was determined by quantifying the compounds' transport over time, deriving the steady-state flux from the linear part of the cumulative curves and calculating the apparent permeability (Papp). The membrane structure was investigated in a high-resolution digital light microscope. RESULTS: The Permeapad® 96-well plate was found suited to distinguish high and low absorption drugs and yielded a hyperbolic correlation to Fa. The Papp values obtained were congruent with those determined with in-house prepared Permeapad® in the Franz cell set-up. Furthermore, good to excellent correlations were seen with Caco-2 permeability (R2 = 0.70) and PAMPA permeability (R2 = 0.89). Microscopic investigation of the Permeapad® barrier revealed the formation of phospholipid vesicles and myelin figures in aqueous environment. CONCLUSION: The Permeapad® 96-well plate permeation set-up is a promising new tool for rapid and reproducible passive permeability profiling.


Assuntos
Portadores de Fármacos/química , Ensaios de Triagem em Larga Escala/métodos , Preparações Farmacêuticas/metabolismo , Fosfolipídeos/química , Células CACO-2 , Humanos , Membranas Artificiais , Modelos Biológicos , Modelos Químicos , Estrutura Molecular , Permeabilidade , Polivinil/química , Soluções/química , Relação Estrutura-Atividade
4.
Artif Organs ; 42(7): 746-755, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29608016

RESUMO

Shear-induced hemolysis is a major concern in the design and optimization of blood-contacting devices. Even with a small amount of mechanical stress, inflammatory reactions can be triggered in the cells. Blood damage is typically estimated using continuum fluid dynamics simulations. In this study, we report a novel cell damage index (CDI) obtained by simulations on the single-cell level in a lattice Boltzmann fluid flow. The change of the cell surface area gives important information on mechanical stress of individual cells as well as for whole blood. We are using predefined basic channel designs to analyze and compare the newly developed CDI to the conventional blood damage calculations in very weak shear stress scenarios. The CDI can incorporate both volume fraction and channel geometry information into a single quantitative value for the characterization of flow in artificial chambers.


Assuntos
Células Sanguíneas/citologia , Simulação por Computador , Teste de Materiais , Modelos Biológicos , Órgãos Artificiais/efeitos adversos , Células Sanguíneas/patologia , Velocidade do Fluxo Sanguíneo , Comunicação Celular , Desenho de Equipamento , Eritrócitos/citologia , Eritrócitos/patologia , Circulação Extracorpórea/efeitos adversos , Circulação Extracorpórea/instrumentação , Hematócrito , Hemodinâmica , Hemólise , Humanos , Hidrodinâmica , Dispositivos Lab-On-A-Chip/efeitos adversos , Modelos Cardiovasculares , Estresse Mecânico
5.
J Liposome Res ; 26(1): 11-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25826203

RESUMO

Filter-extrusion is a widely used technique for down-sizing of phospholipid vesicles. In order to gain a detailed insight into size and size distributions of filter-extruded vesicles composed of egg phosphatidyl-choline (with varying fractions of cholesterol)--in relation to extrusion-parameters (pore-size, number of filter passages, and flow-rate), flow field-flow fractionation in conjunction with multi-angle laser light scattering (AF4-MALLS, Wyatt Technology Corp., Santa Barbara, CA) was employed. Liposome size-distributions determined by AF4-MALLS were compared with those of dynamic light scattering and correlated with cryo-transmission electron microscopy and (31)P-NMR-analysis of lamellarity. Both the mean size of liposome and the width of size distribution were found to decrease with sequential extrusion through smaller pore size filters, starting at a size range of ≈70-415 nm upon repeated extrusion through 400 nm pore-filters, eventually ending with a size range from ≈30 to 85 nm upon extrusion through 30 nm pore size filters. While for small pores sizes (50 nm), increased flow rates resulted in smaller vesicles, no significant influence of flow rate on mean vesicle size was seen with larger pores. Cholesterol at increasing mol fractions up to 0.45 yielded bigger vesicles (at identical process conditions). For a cholesterol mol fraction of 0.5 in combination with small filter pore size, a bimodal size distribution was seen indicating cholesterol micro-crystallites. Finally, a protocol is suggested to prepare large (∼ 300 nm) liposomes with rather narrow size distribution, based on the filter extrusion at defined flow-rates in combination with freeze-/thaw-cycling and bench-top centrifugation.


Assuntos
Lipídeos/química , Lipossomos/química , Tamanho da Partícula
6.
Anal Bioanal Chem ; 406(30): 7827-39, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24518901

RESUMO

Knowledge about drug retention within colloidal carriers is of uppermost importance particularly if drug targeting is anticipated. The aim of the present study was to evaluate asymmetrical flow field-flow fractionation (AF4) with on-line UV/VIS drug quantification for its suitability to determine both release and transfer of drug from liposomal carriers to a model acceptor phase consisting of large liposomes. The hydrophobic porphyrin 5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine (p-THPP), a fluorescent dye with an absorbance maximum in the visible range and structural similarity to the clinically used photosensitizer temoporfin, was used as a model drug, and two types of large liposomes were studied as a potential model acceptor phase. Efficiency of separation of small donor from large acceptor liposomes by AF4 was evaluated in dependence on the injected lipid mass using two different channel geometries. Drug quantification by on-line absorbance measurements was established by comprehensive evaluation of the size-dependent turbidity contribution in on-line UV/VIS detection and by comparison with off-line results obtained for the respective dye-loaded donor formulations (dissolved in methanol). Due to distinct differences in size, the acceptor liposomes (mean diameters ∼300-400 nm) could efficiently be separated from the donor liposomes (mean diameter ∼70 nm) with less than 4 % of p-THPP detected in the overlap region between both vesicle populations. Whereas p-THPP could accurately be determined in the fraction of small vesicles, on-line quantification was impaired in the fraction of the large acceptor liposomes due to the pronounced contribution of turbidity (about 80 % of total UV/VIS extinction signal). The AF4-based release/transfer approach suggested here was found repeatable and robust. The employed combination of AF4 with multi-angle laser light scattering furthermore provided detailed size information of the eluting sample and thus allowed to detect instabilities and/or interactions between the donor and acceptor liposomes. Drug quantification by on-line absorbance measurements was found feasible for the chosen model drug, but careful (re-)evaluation of turbidity effects is crucial for other drug and carrier combinations.


Assuntos
Liberação Controlada de Fármacos , Corantes Fluorescentes/administração & dosagem , Fracionamento por Campo e Fluxo/métodos , Lipossomos/química , Porfirinas/administração & dosagem , Sistemas de Liberação de Medicamentos , Estudos de Viabilidade , Corantes Fluorescentes/química , Lipossomos/ultraestrutura , Porfirinas/química , Espectrofotometria Ultravioleta/métodos
7.
J Liposome Res ; 24(4): 323-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24807822

RESUMO

The purpose of this study was the development of multifunctional liposomes for nasal administration of tacrine hydrochloride. Liposomes were prepared using traditional excipients (cholesterol and phosphatidylcholine), partly enriched with α-tocopherol and/or Omega3 fatty acids. This approach was chosen in order to obtain at the same time two positive results: an enhanced drug permeation through nasal mucosa and a concomitant neuroprotective effect. Several liposome formulations were prepared using the Reverse Phase Evaporation technique followed by membrane filter extrusion. In particular, liposome capacity to enhance drug permeation was evaluated by means of membrane permeation and cellular uptake studies. Furthermore, liposome effect on neuronal viability and intracellular ROS production was evaluated as well as their cytoprotective effect against oxidative stress. All liposome formulations showed a mean diameter in the range of 175 nm to 219 nm with polydispersity index lower than 0.22, a lightly negative zeta potential and excellent encapsulation efficiency. Moreover, along with good mucoadhesive properties, multifunctional liposomes showed a markedly increase in tacrine permeability, which can be related to liposome fusion with cellular membrane, a hypothesis, which was also supported by cellular uptake studies. Finally, the addition of α-tocopherol without Omega3 fatty acids, was found to increase the neuroprotective activity and antioxidant properties of liposomes.


Assuntos
Inibidores da Colinesterase/farmacologia , Portadores de Fármacos/farmacologia , Neurônios/efeitos dos fármacos , Nootrópicos/farmacologia , Tacrina/farmacologia , Adesividade , Administração Intranasal , Animais , Transporte Biológico , Linhagem Celular , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Composição de Medicamentos , Humanos , Técnicas In Vitro , Lipossomos , Fusão de Membrana/efeitos dos fármacos , Mucosa Nasal/metabolismo , Neurônios/metabolismo , Nootrópicos/administração & dosagem , Nootrópicos/química , Nootrópicos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Carneiro Doméstico , Tacrina/administração & dosagem , Tacrina/química , Tacrina/metabolismo
8.
Biosensors (Basel) ; 14(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38248405

RESUMO

Aphanizomenon is a genus of cyanobacteria that is filamentous and nitrogen-fixing and inhabits aquatic environments. This genus is known as one of the major producers of cyanotoxins that can affect water quality after the bloom period. In this study, an electrochemical aptasensor is demonstrated using a specific aptamer to detect Aphanizomenon sp. ULC602 for the rapid and sensitive detection of this bacterium. The principal operation of the generated aptasensor is based on the conformational change in the aptamer attached to the electrode surface in the presence of the target bacterium, resulting in a decrease in the current peak, which is measured by square-wave voltammetry (SWV). This aptasensor has a limit of detection (LOD) of OD750~0.3, with an extension to OD750~1.2 and a sensitivity of 456.8 µA·OD750-1·cm-2 without interference from other cyanobacteria. This is the first aptasensor studied that provides rapid detection to monitor the spread of this bacterium quickly in a targeted manner.


Assuntos
Cianobactérias , Toxinas de Cianobactérias , Eletrodos , Água Doce , Limite de Detecção , Oligonucleotídeos
9.
Eur J Pharm Sci ; 194: 106703, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224722

RESUMO

Predicting the absorption of drugs from enabling formulations is still challenging due to the limited capabilities of standard physiologically based biopharmaceutics models (PBBMs) to capture complex absorption processes. Amongst others, it is often assumed that both, molecularly and apparently dissolved drug in the gastrointestinal lumen are prone to absorption. A recently introduced method for measuring concentrations of molecularly dissolved drug in a dynamic in vitro dissolution setup using microdialysis has opened new opportunities to test this hypothesis and refine mechanistic PBBM approaches. In the present study, we compared results of PBBMs that used either molecularly or apparently dissolved concentrations in the simulated gastrointestinal lumen as input parameters. The in vitro dissolution data from three supersaturating formulations of Posaconazole (PCZ) were used as model input. The modeling outcome was verified using PCZ concentration vs. time profiles measured in human intestinal aspirates and in the blood plasma. When using apparently dissolved drug concentrations (i.e., the sum of colloid-associated and molecularly dissolved drug) the simulated systemic plasma exposures were overpredicted, most pronouncedly with the ASD-based tablet. However, if the concentrations of molecularly dissolved drug were used as input values, the PBBM resulted in accurate prediction of systemic exposures for all three PCZ formulations. The present study impressively demonstrated the value of considering molecularly dissolved drug concentrations as input value for PBBMs of supersaturating drug formulations.


Assuntos
Biofarmácia , Coloides , Humanos , Biofarmácia/métodos , Solubilidade , Administração Oral , Absorção Intestinal/fisiologia , Modelos Biológicos
10.
J Biol Chem ; 287(1): 233-244, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22057278

RESUMO

The cytotoxic activity of 10 analogs of the idealized amphipathic helical 21-mer peptide (KAAKKAA)3, where three of the Ala residues at different positions have been replaced with Trp residues, has been investigated. The peptide's cytotoxic activity was found to be markedly dependent upon the position of the Trp residues within the hydrophobic sector of an idealized α-helix. The peptides with Trp residues located opposite the cationic sector displayed no antitumor activity, whereas those peptides with two or three Trp residues located adjacent to the cationic sector exhibited high cytotoxic activity when tested against three different cancer cell lines. Dye release experiments revealed that in contrast to the peptides with Trp residues located opposite the cationic sector, the peptides with Trp residues located adjacent to the cationic sector induced a strong permeabilizing activity from liposomes composed of a mixture of zwitterionic phosphatidylcholine and negatively charged phosphatidylserine (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS)) (2:1) but not from liposomes composed of zwitterionic phosphatidylcholine, POPC. Fluorescence blue shift and quenching experiments revealed that Trp residues inserted deeper into the hydrophobic environment of POPC/POPS liposomes for peptides with high cytotoxic activity. Through circular dichroism studies, a correlation between the cytotoxic activity and the α-helical propensity was established. Structural studies of one inactive and two active peptides in the presence of micelles using NMR spectroscopy showed that only the active peptides adopted highly coiled to helical structures when bound to a membrane surface.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Triptofano , Sequência de Aminoácidos , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/síntese química , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
11.
Blood Purif ; 36(2): 136-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24217288

RESUMO

BACKGROUND/AIMS: Because of a high monitoring demand and an ensuing need for automation of regional citrate anticoagulation (RCA), a new semi-automated target-oriented algorithm was developed. The aim of this study was the evaluation of its functionality and safety. METHODS: Fourteen haemodialysis patients were treated 5 times consecutively with RCA. Samples were drawn pre- and post-infusion once per hour. Electrolytes, blood cell counts, acid-base and coagulation parameters were analyzed. RESULTS: Mean ionized calcium (Ca(2+)) values pre-filter were 0.23 and 0.33 mmol/l in the 0.2 and 0.3 mmol/l target groups, respectively. Extraction ratios for citrate and total calcium through the dialysis filter were constant during the entire treatment (83 and 68%, respectively). Citrate accumulation was avoided. CONCLUSION: The new algorithm enables safe and accurate RCA. By regulating Ca(2+) pre-filter using the target-oriented algorithm, the degree of anticoagulation may be easily controlled.


Assuntos
Algoritmos , Anticoagulantes/administração & dosagem , Coagulação Sanguínea/efeitos dos fármacos , Citrato de Cálcio/administração & dosagem , Falência Renal Crônica/sangue , Falência Renal Crônica/terapia , Diálise Renal , Adulto , Anticoagulantes/efeitos adversos , Anticoagulantes/farmacocinética , Cálcio/sangue , Citrato de Cálcio/efeitos adversos , Citrato de Cálcio/farmacocinética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Diálise Renal/instrumentação , Diálise Renal/métodos , Resultado do Tratamento
12.
J Liposome Res ; 23(1): 70-81, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23210622

RESUMO

Camptothecin (CPT) represents a potent anticancer drug. However, its therapeutic use is impaired by both drug solubility, hydrolysis, and protein interactions in vivo. Use of liposomes as a drug-formulation approach could overcome some of these challenges. The aim of this study was to perform a mechanistic study of the incorporation and retention of the lipophilic parent CPT compound in different liposome formulations using radiolabeled CPT and thus to be able to identify promising CPT delivery systems. In this context, we also wanted to establish an appropriate mouse tumor model, in vivo scintigraphic imaging, and biodistribution methodology for testing the most promising formulation. CPT retention in various liposome formulations after incubation in buffer and serum was determined. The HT-29 mouse tumor model, (111)In-labeled liposomes, as well as (3)H-labeled CPT were used to investigate the biodistribution of liposomes and drug. The ability of different liposome formulations to retain CPT in buffer was influenced by lipid concentration and drug/lipid ratio, rather than lipid composition. The tested formulations were cleared from the blood in the following order: CPT solution > CPT liposomes > (111)In-labeled liposomes, and liposomes mainly accumulated in the liver. Lipid composition did not influence CPT retention to the same extent as earlier observed from incorporation studies. The set-up for the biodistribution study works well and is suited for future in vivo studies on CPT liposomes. The biodistribution study showed that liposomes circulated longer than free drug, but premature release of drug from liposomes occurred. Further studies to develop formulations with higher retention potential and prolonged circulation are desired.


Assuntos
Camptotecina/administração & dosagem , Sistemas de Liberação de Medicamentos , Lipossomos/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Camptotecina/química , Humanos , Lipídeos , Lipossomos/química , Camundongos , Neoplasias/patologia , Solubilidade , Distribuição Tecidual
13.
Front Microbiol ; 14: 1220818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188574

RESUMO

Aphanizomenon sp. ULC602, recently isolated in a Belgian lake, is a filamentous, nitrogen-fixing, freshwater cyanobacterium that is one of the primary producers of cyanotoxins following its bloom formation, causing water contamination. This study aims to evaluate the effects of growing conditions and essential nutrients on the growth of Aphanizomenon sp. ULC602 via its production of chlorophyll-a (Chlo-a). Our results indicated that this bacterium could grow well at temperatures ranging from 18 to 25°C with an optimal pH of 6.0-7.5 under continuous lighting. It grew slowly in the absence of a carbon source or at lower carbon concentrations. The addition of nitrogen from nitrate and urea led to a less than 50% reduction of Chlo-a content compared to the medium lacking nitrogen. The iron bioavailability significantly stimulated the Chlo-a production, but it was saturated by an iron concentration of 0.115 mM. Moreover, a decrease in Chlo-a biomass was observed under sulfur deficiency. The bacterium could not grow well in media containing various phosphorus sources. In conclusion, as the growth and consequent forming bloom of cyanobacteria can be stimulated or inhibited by environmental conditions and eutrophication, our investigation could contribute to further studies to control the blooming of the target bacterium in freshwater.

14.
J Pharm Sci ; 112(5): 1372-1378, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36539063

RESUMO

The marketed oral solution of itraconazole (Sporanox®) contains 40% (259.2 mM) of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD). The obvious role of HP-ß-CD is to solubilize itraconazole and to overcome its poor aqueous solubility that restricts its absorption. In this study, we investigated the biorelevance of in vitro experiments by the influence of biomimetic media (containing bile salts and phospholipids) on the predicted itraconazole absorption from the commercial HP-ß-CD-based Sporanox® solution. We performed phase-solubility studies of itraconazole and dynamic 2-step-dissolution/permeation studies using a biomimetic artificial barrier, Sporanox® solution, and fasted state simulated intestinal fluid (FaSSIF_V1). Both FaSSIF_V1 and HP-ß-CD increased the apparent solubility of itraconazole when used individually. In combination, their solubility-enhancing effects were not additive probably due to the competition of bile salts with itraconazole for the hydrophobic cavity of HP-ß-CD. Our combined dissolution/permeation experiments indicated the occurrence of a transient supersaturation from Sporanox® upon two-step dissolution. Through systematic variation of bile salt concentrations in the biomimetic media, it was observed that the extent and the duration of supersaturation depend on the concentrations of bile salts: supersaturation was rather stable in the absence of bile salts and phospholipids. The higher the bile salt concentration, the faster the collapse of the transient supersaturation occurred, an effect which is nicely mirrored by reduced in vitro permeation across the barrier. This is an indication of a negative food effect, which in fact correlates well with what earlier had been observed in clinical studies for Sporanox® solution. In essence, we could demonstrate that in vitro two-stage dissolution/permeation experiments using an artificial barrier and selected biomimetic media may predict the negative effects of the latter on cyclodextrin-based drug formulations like Sporanox® Oral Solution and, at the same time, provide a deeper mechanistic insight.


Assuntos
Ciclodextrinas , Itraconazol , Itraconazol/química , Ciclodextrinas/química , Solubilidade , 2-Hidroxipropil-beta-Ciclodextrina/química , Ácidos e Sais Biliares , Biomimética
15.
Eur J Pharm Sci ; 184: 106417, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870578

RESUMO

As numerous new drug candidates are poorly water soluble, enabling formulations are needed to increase their bioavailability for oral administration. Nanoparticles are a conceptually simple, yet resource consuming strategy for increasing drug dissolution rate, as predicting in vivo oral absorption using in vitro dissolution remains difficult. The objective of this study was to obtain insight into nanoparticle characteristics and performance utilizing an in vitro combined dissolution/permeation setup. Two examples of poorly soluble drugs were examined (cinnarizine and fenofibrate). Nanosuspensions were produced by top-down wet bead milling using dual asymmetric centrifugation, obtaining particle diameters of approx. 300 nm. DSC and XRPD studies indicated that nanocrystals of both drugs were present with retained crystallinity, however with some disturbances. Equilibrium solubility studies showed no significant increase in drug solubility over the nanoparticles, as compared to the raw APIs. Combined dissolution/permeation experiments revealed significantly increased dissolution rates for both compounds compared to the raw APIs. However, there were substantial differences between the dissolution curves of the nanoparticles as fenofibrate exhibited supersaturation followed by precipitation, whereas cinnarizine did not exhibit any supersaturation, but instead a shift towards faster dissolution rate. Permeation rates were found significantly increased for both nanosuspensions when compared to the raw APIs, indicating a direct implication that formulation strategies are needed, be it stabilization of supersaturation by precipitation inhibition and/or dissolution rate enhancement. This study indicates that in vitro dissolution/permeation studies can be employed to better understand the oral absorption enhancement of nanocrystal formulations.


Assuntos
Cinarizina , Fenofibrato , Nanopartículas , Administração Oral , Disponibilidade Biológica , Cinarizina/administração & dosagem , Cinarizina/química , Fenofibrato/administração & dosagem , Fenofibrato/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Tamanho da Partícula , Preparações Farmacêuticas , Solubilidade
16.
Eur J Pharm Sci ; 188: 106533, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37480963

RESUMO

Many novel small drug molecules are poorly water-soluble and thus, enabling drug formulations may be required to ensure sufficient absorption upon oral administration. Biopharmaceutical assessment and absorption prediction of enabling formulations, however, remains challenging. Combined in vitro dissolution/permeation (D/P) assays have gained increasing interest since they may provide a more realistic formulation ranking based on the drug permeation profiles from different formulations as compared to conventional dissolution, which captures both readily permeable and not readily permeable fractions of "dissolved" drug. Moreover, the combined in vitro D/P assays allow to better predict intestinal supersaturation and precipitation processes as compared to simple dissolution setups due to the effect of an absorptive sink. Microdialysis on the other hand has proven useful to determine molecularly dissolved drug in colloidal dispersions, thus allowing for a deeper mechanistic insight into the mechanism of drug release from supersaturating formulations. Here, microdialysis sampling from the donor compartment was used in combination with the dissolution/permeation (D/P) tool PermeaLoop™ to study commercial supersaturating drug formulations of the poorly soluble and weakly basic drug Posaconazole (PCZ). An amorphous solid dispersion (ASD)-based tablet, as well as a crystalline suspension in acidified and neutral dilution medium, respectively, were tested. Microdialysis sampling allowed for differentiation between molecularly dissolved and micellar drug concentration, as expected, but, surprisingly, it was found that the presence of the microdialysis probe affected the precipitation behavior of a crystalline suspension within the two-stage D/P setup, simulating the oral administration of the acidified PCZ (Noxafil®) suspension: the extent and duration of supersaturation in the donor decreased significantly, which also affected permeation. Similarly, for the ASD-based tablet, a less pronounced supersaturation was observed during the first 120 min of the experiment. Hence, in this case, the formulation ranking and the prediction of intestinal supersaturation in the in vitro D/P assay became less predictive as compared to a conventional PermeaLoop™ study without microdialysis sampling. It was concluded that valuable mechanistic insights into the molecularly dissolved drug profiles over time can be obtained by microdialysis. However, since the presence of the probe may affect the degree of supersaturation and precipitation, a conventional D/P assay (without microdialysis sampling) is preferred for formulation ranking of supersaturating drug formulations.


Assuntos
Produtos Biológicos , Química Farmacêutica , Solubilidade , Composição de Medicamentos , Microdiálise , Liberação Controlada de Fármacos , Comprimidos
17.
Int J Pharm ; 644: 123294, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37544387

RESUMO

Amorphous solid dispersions (ASD) represent a viable formulation strategy to improve dissolution and bioavailability of poorly soluble drugs. Our study aimed to evaluate the feasibility and potential role of hydrogenated phospholipid (HPL) as a matrix material and solubilizing additive for binary (alone) or ternary (in combination with polymers) solid dispersions, using fenofibrate (FEN) as the model drug. FEN, incorporated within ASDs by melting or freeze-drying (up to 20% m/m), stayed amorphous during short-term stability studies. The solubility enhancing potential of HPL depended on the dissolution medium. In terms of enhancing in vitro permeation, solid dispersions with HPL were found equally or slightly more potent as compared to the polymer-based ASD. For studied ASD, in vitro permeation was found substantially enhanced as compared to a suspension of crystalline FEN and at least equal compared to marketed formulations under comparable conditions (literature data). Additionally, while the permeation of neat FEN and FEN in binary solid dispersions was affected by the dissolution medium (i.e., the "prandial state"), for ternary solid dispersions the permeation was independent of the "prandial state" (FaSSIF = FeSSIF). This suggests that ternary solid dispersions containing both polymer and HPL may represent a viable formulation strategy to mitigate fenofibrate's food effect.


Assuntos
Produtos Biológicos , Fenofibrato , Fenofibrato/química , Excipientes , Fosfolipídeos , Polímeros/química , Preparações Farmacêuticas , Solubilidade
18.
Eur J Pharm Sci ; 181: 106366, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565891

RESUMO

Fosamprenavir is a phosphate ester prodrug that, upon dissolution, is cleaved to the poorly soluble yet readily absorbable parent drug amprenavir. In this study, a novel cell-free in vitro setup with quasi-continuous monitoring of the dynamic dissolution/bio-conversion/permeation of fosamprenavir was designed and tested. It consists of side-by-side diffusion cells, where the donor and acceptor compartments are separated by the biomimetic barrier PermeaPad®, and sampling from the donor compartment is accomplished via a microdialysis probe. Externally added bovine alkaline phosphatase induced bioconversion in the donor compartment. Microdialysis sampling allowed to follow the enzymatic conversion of fosamprenavir to amprenavir by the bovine alkaline phosphatase in an (almost) real-time manner eliminating the need to remove or inactivate the enzyme. Biomimetic conversion rates in the setup were established by adding appropriate amounts of the alkaline phosphatase. A substantial (6.5-fold) and persistent supersaturation of amprenavir was observed due to bioconversion at lower (500 µM) concentrations, resulting in a substantially increased flux across the biomimetic barrier, nicely reflecting the situation in vivo. At conditions with an almost 10-fold higher dose than the usual human dose, some replicates showed premature precipitation and collapse of supersaturation, while others did not. In conclusion, the proposed novel tool appears very promising in gaining an in-depth mechanistic understanding of the bioconversion/permeation interplay, including transient supersaturation of phosphate-ester prodrugs like fosamprenavir.


Assuntos
Pró-Fármacos , Animais , Bovinos , Humanos , Fosfatase Alcalina , Biomimética , Ésteres , Microdiálise , Organofosfatos , Fosfatos , Pró-Fármacos/metabolismo , Solubilidade
19.
Eur J Pharm Sci ; 188: 106512, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423576

RESUMO

Along with the increasing demand for candidate-enabling formulations comes the need for appropriate in vitro bioavailability forecasting. Dissolution/permeation (D/P) systems employing cell-free permeation barriers are increasingly gaining interest, due to their low cost and easy application as passive diffusion bio-predictive profiling in drug product development, as this accounts for nearly 75% of new chemical entities (NCEs) absorption mechanism. To this end, this study comprises theoretical considerations on the design and experimental work towards the establishment and optimization of a PermeaLoop™ based dissolution/permeation assay to simultaneously evaluate the drug release and permeation using Itraconazole (ITZ)-based amorphous solid dispersions (ASD) formulations, with different drug loads, based on a solvent-shift approach. Alternative method conditions were tested such as: donor medium, acceptor medium and permeation barrier were screened using both PermeaPad® and PermeaPlain® 96-well plates. A range of solubilizers, namely Sodium Dodecyl Sulfate, Vitamin E-TPGS and hydroxypropyl-ß-cyclodextrin, were screened as possible solubilizing additives to the acceptor medium, while donor medium was varied between blank FaSSIF (phosphate buffer) and FaSSIF. The method optimization also included the ITZ dose selection, being the ITZ single dose (100 mg) considered the most adequate to be used in further experiments to allow the comparison with in vivo studies. In the end, a standardized approach that may be applied to predict the bioavailability of weakly basic poorly soluble drug-based formulations is described, contributing to strengthening the analytical portfolio of in vitro pre-clinical drug product development.


Assuntos
Química Farmacêutica , Projetos de Pesquisa , Solubilidade , Disponibilidade Biológica , Química Farmacêutica/métodos , Itraconazol
20.
Eur J Pharm Sci ; 182: 106384, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36642346

RESUMO

For oral drug delivery the stability of liposomes against intestinal bile salts is of key importance. Here, asymmetric flow field-flow fractionation (AF4) coupled to multi-angle laser light scattering (MALLS) and a differential refractive index (dRI) detector was employed to monitor structural re-arrangement of liposomes upon exposure to the model bile salt taurocholate. For comparison, a conventional stability assay was employed using a hydrophilic marker and size exclusion chromatography (SEC) to separate released from liposome-entrapped dye. Calcein-containing liposomes with and without cholesterol were compared in terms of their in vitro stability upon exposure to bile salts by separating liposomes from co-existing colloidal species emerging after stress test using AF4/MALLS/dRI. Dynamic light scattering (DLS) was utilized in parallel. Our AF4/MALLS/dRI results suggested that exposure of egg-phospholipid liposomes to bile salts at physiological concentrations led to the formation of two new species of colloidal associates, likely (mixed) micelles. Subjecting cholesterol-containing liposomes to the same bile media did not lead to any new colloidal structures, indicating increased stability of these liposomes. Our SEC-based release assay largely confirmed these findings, indicating that AF4/MALLS/dRI is a suitable technique for prediction of in vitro oral stability of liposomal formulations. Moreover, the powerful AF4/MALLS/dRI technique appears promising to improve the understanding of the underlying mechanisms during bile salt-induced liposomal breakdown.


Assuntos
Portadores de Fármacos , Lipossomos , Lipossomos/química , Ácidos e Sais Biliares , Micelas , Sistemas de Liberação de Medicamentos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA