Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vet Parasitol X ; 3: 100023, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32904749

RESUMO

Buparvaquone and parvaquone are hydroxynaphthoquinone compounds commonly used to treat livestock infected with Theileria species such as T. parva and T. annulata. In many (sub)tropical regions, chromatic changes in medicines can result from extreme environmental conditions and improper drug storage or handling, raising the possibility of drug degradation and loss of potency. We evaluated the effects of UV light, elevated temperature, and atmospheric air on the stability and potency of both buparvaquone and parvaquone by using a combination of high performance liquid chromatography (HPLC) and a T. equi based in vitro parasite growth inhibition assay (to measure potency). Aliquots (1 ml; 3 replicates per treatment) of each compound were subjected to a variety of treatments that varied in duration and intensity followed by HPLC and potency assays. Exposure to ambient air for 50 days was correlated with a significant loss of potency for both buparvaquone (4535%, P <  0.05) and parvaquone (247%, P <  0.05), while elevated temperature (37°C) and UV light exposure (24 h) had no significant impact (P >  0.05). The decrease in potency of both buparvaquone and parvaquone correlated with drug degradation (r = -0.74 and -0.88, respectively) as measured by HPLC. In practice, if there is headspace present in the vial, then ambient air will invariably enter the vial and contribute to degradation of these compounds. Such degradation may contribute to increasing drug resistance, economic losses for farmers, and animal welfare concerns for animals that are treated for Theileria infections.

2.
Vet Parasitol ; 277S: 100023, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34392948

RESUMO

Buparvaquone and parvaquone are hydroxynaphthoquinone compounds commonly used to treat livestock infected with Theileria species such as T. parva and T. annulata. In many (sub)tropical regions, chromatic changes in medicines can result from extreme environmental conditions and improper drug storage or handling, raising the possibility of drug degradation and loss of potency. We evaluated the effects of UV light, elevated temperature, and atmospheric air on the stability and potency of both buparvaquone and parvaquone by using a combination of high performance liquid chromatography (HPLC) and a T. equi based in vitro parasite growth inhibition assay (to measure potency). Aliquots (1ml; 3 replicates per treatment) of each compound were subjected to a variety of treatments that varied in duration and intensity followed by HPLC and potency assays. Exposure to ambient air for 50 days was correlated with a significant loss of potency for both buparvaquone (4535%, P< 0.05) and parvaquone (247%, P< 0.05), while elevated temperature (37°C) and UV light exposure (24 h) had no significant impact (P> 0.05). The decrease in potency of both buparvaquone and parvaquone correlated with drug degradation (r = -0.74 and -0.88, respectively) as measured by HPLC. In practice, if there is headspace present in the vial, then ambient air will invariably enter the vial and contribute to degradation of these compounds. Such degradation may contribute to increasing drug resistance, economic losses for farmers, and animal welfare concerns for animals that are treated for Theileria infections.

3.
Open Forum Infect Dis ; 5(7): ofy145, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30680292

RESUMO

Two consecutive outbreaks of group A Streptococcus (GAS) infections occurred from 2015-2016 among residents of a Chicago skilled nursing facility. Evaluation of wound care practices proved crucial for identifying transmission factors and implementing prevention measures. We demonstrated shedding of GAS on settle plates during care of a colonized wound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA