Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 11(6): M111.015339, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22261724

RESUMO

Asparagine-linked glycosylation is a common post-translational modification of proteins; in addition to participating in key macromolecular interactions, N-glycans contribute to protein folding, trafficking, and stability. Despite their importance, few N-glycosites have been experimentally mapped in the Saccharomyces cerevisiae proteome. Factors including glycan heterogeneity, low abundance, and low occupancy can complicate site mapping. Here, we report a novel mass spectrometry-based strategy for detection of N-glycosites in the yeast proteome. Our method imparts N-glycopeptide mass envelopes with a pattern that is computationally distinguishable from background ions. Isotopic recoding is achieved via metabolic incorporation of a defined mixture of N-acetylglucosamine isotopologs into N-glycans. Peptides bearing the recoded envelopes are specifically targeted for fragmentation, facilitating high confidence site mapping. This strategy requires no chemical modification of the N-glycans or stringent sample enrichment. Further, enzymatically simplified N-glycans are preserved on peptides. Using this approach, we identify 133 N-glycosites spanning 58 proteins, nearly doubling the number of experimentally observed N-glycosites in the yeast proteome.


Assuntos
Polissacarídeos/química , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilglucosamina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Consenso , Glicosilação , Marcação por Isótopo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos , Processamento de Proteína Pós-Traducional , Proteoma/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
2.
Proc Natl Acad Sci U S A ; 107(9): 3988-93, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20142501

RESUMO

Metabolic labeling of glycans with synthetic sugar analogs has emerged as an attractive means for introducing nonnatural chemical functionality into glycoproteins. However, the complexities of glycan biosynthesis prevent the installation of nonnatural moieties at defined, predictable locations within glycoproteins at high levels of incorporation. Here, we demonstrate that the conserved N-acetyglucosamine (GlcNAc) residues within chitobiose cores of N-glycans in the model organism Saccharomyces cerevisiae can be specifically targeted for metabolic replacement by unnatural sugars. We introduced an exogenous GlcNAc salvage pathway into yeast, allowing cells to metabolize GlcNAc provided as a supplement to the culture medium. We then rendered the yeast auxotrophic for production of the donor nucleotide-sugar uridine-diphosphate-GlcNAc (UDP-GlcNAc) by deletion of the essential gene GNA1. We demonstrate that gna1Delta strains require a GlcNAc supplement and that expression plasmids containing both exogenous components of the salvage pathway, GlcNAc transporter NGT1 from Candida albicans and GlcNAc kinase NAGK from Homo sapiens, are required for rescue in this context. Further, we show that cells successfully incorporate synthetic GlcNAc analogs N-azidoacetyglucosamine (GlcNAz) and N-(4-pentynoyl)-glucosamine (GlcNAl) into cell-surface glycans and secreted glycoproteins. To verify incorporation of the nonnatural sugars at N-glycan core positions, endoglycosidase H (endoH)-digested peptides from a purified secretory glycoprotein, Ygp1, were analyzed by mass spectrometry. Multiple Ygp1 N-glycosylation sites bearing GlcNAc, isotopically labeled GlcNAc, or GlcNAz were identified; these modifications were dependent on the supplement added to the culture medium. This system enables the production of glycoproteins that are functionalized for specific chemical modifications at their glycosylation sites.


Assuntos
Metabolismo dos Carboidratos , Polissacarídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilglucosamina/metabolismo , Sequência de Aminoácidos , Glicoproteínas/química , Glicoproteínas/metabolismo , Dados de Sequência Molecular , Polissacarídeos/química
3.
Nature ; 432(7019): 925-9, 2004 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-15592454

RESUMO

Clostridal neurotoxins (CNTs) are the causative agents of the neuroparalytic diseases botulism and tetanus. CNTs impair neuronal exocytosis through specific proteolysis of essential proteins called SNAREs. SNARE assembly into a low-energy ternary complex is believed to catalyse membrane fusion, precipitating neurotransmitter release; this process is attenuated in response to SNARE proteolysis. Site-specific SNARE hydrolysis is catalysed by the CNT light chains, a unique group of zinc-dependent endopeptidases. The means by which a CNT properly identifies and cleaves its target SNARE has been a subject of much speculation; it is thought to use one or more regions of enzyme-substrate interaction remote from the active site (exosites). Here we report the first structure of a CNT endopeptidase in complex with its target SNARE at a resolution of 2.1 A: botulinum neurotoxin serotype A (BoNT/A) protease bound to human SNAP-25. The structure, together with enzyme kinetic data, reveals an array of exosites that determine substrate specificity. Substrate orientation is similar to that of the general zinc-dependent metalloprotease thermolysin. We observe significant structural changes near the toxin's catalytic pocket upon substrate binding, probably serving to render the protease competent for catalysis. The novel structures of the substrate-recognition exosites could be used for designing inhibitors specific to BoNT/A.


Assuntos
Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Clostridium botulinum/química , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sítios de Ligação , Toxinas Botulínicas Tipo A/antagonistas & inibidores , Toxinas Botulínicas Tipo A/genética , Catálise , Clostridium botulinum/enzimologia , Clostridium botulinum/genética , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/metabolismo , Humanos , Hidrólise , Cinética , Proteínas de Membrana/química , Modelos Moleculares , Mutação/genética , Proteínas do Tecido Nervoso/química , Conformação Proteica , Especificidade por Substrato , Proteína 25 Associada a Sinaptossoma
4.
Trends Mol Med ; 11(8): 377-81, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16006188

RESUMO

Botulinum neurotoxin serotype A (BoNT/A) has achieved a dichotomous status in modern medicine; it is both a versatile treatment for several neurological disorders and a lethal poison responsible for causing the neuroparalytic syndrome botulism. The extent of paralysis largely depends on the dosage of toxin received. The toxins block neurotransmitter release by delivering their Zn(2+)-dependent protease components to the presynaptic side of chemical synapses. These highly specialized enzymes exclusively hydrolyze peptide bonds within SNARE (soluble N-ethylmaleiamide-sensitive factor attachment protein receptor) proteins. Recently, the structural basis for the highly specific interaction between BoNT/A and its target SNARE, SNAP-25 (synaptosomal-associated protein of 25kDa), was elucidated. New details regarding the nature of the toxin-SNARE interactions could be exploited for novel inhibitor design.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Fármacos Neuromusculares/farmacologia , Neurotransmissores/antagonistas & inibidores , Proteínas de Transporte Vesicular/efeitos dos fármacos , Toxinas Botulínicas Tipo A/química , Proteínas SNARE , Proteínas de Transporte Vesicular/química
6.
PLoS One ; 8(6): e65080, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762287

RESUMO

The genome of Mycobacterium tuberculosis (Mtb) encodes nine putative sulfatases, none of which have a known function or substrate. Here, we characterize Mtb's single putative type II sulfatase, Rv3406, as a non-heme iron (II) and α-ketoglutarate-dependent dioxygenase that catalyzes the oxidation and subsequent cleavage of alkyl sulfate esters. Rv3406 was identified based on its homology to the alkyl sulfatase AtsK from Pseudomonas putida. Using an in vitro biochemical assay, we confirmed that Rv3406 is a sulfatase with a preference for alkyl sulfate substrates similar to those processed by AtsK. We determined the crystal structure of the apo Rv3406 sulfatase at 2.5 Å. The active site residues of Rv3406 and AtsK are essentially superimposable, suggesting that the two sulfatases share the same catalytic mechanism. Finally, we generated an Rv3406 mutant (Δrv3406) in Mtb to study the sulfatase's role in sulfate scavenging. The Δrv3406 strain did not replicate in minimal media with 2-ethyl hexyl sulfate as the sole sulfur source, in contrast to wild type Mtb or the complemented strain. We conclude that Rv3406 is an iron and α-ketoglutarate-dependent sulfate ester dioxygenase that has unique substrate specificity that is likely distinct from other Mtb sulfatases.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Sulfatases/metabolismo , Sulfatos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Ferro/química , Ácidos Cetoglutáricos/química , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Oxirredução , Conformação Proteica , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfatases/química , Sulfatases/genética , Sulfatos/química
7.
J Biol Chem ; 283(29): 20117-25, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18390551

RESUMO

Type I sulfatases require an unusual co- or post-translational modification for their activity in hydrolyzing sulfate esters. In eukaryotic sulfatases, an active site cysteine residue is oxidized to the aldehyde-containing C(alpha)-formylglycine residue by the formylglycine-generating enzyme (FGE). The machinery responsible for sulfatase activation is poorly understood in prokaryotes. Here we describe the identification of a prokaryotic FGE from Mycobacterium tuberculosis. In addition, we solved the crystal structure of the Streptomyces coelicolor FGE homolog to 2.1 A resolution. The prokaryotic homolog exhibits remarkable structural similarity to human FGE, including the position of catalytic cysteine residues. Both biochemical and structural data indicate the presence of an oxidized cysteine modification in the active site that may be relevant to catalysis. In addition, we generated a mutant M. tuberculosis strain lacking FGE. Although global sulfatase activity was reduced in the mutant, a significant amount of residual sulfatase activity suggests the presence of FGE-independent sulfatases in this organism.


Assuntos
Glicina/análogos & derivados , Mycobacterium tuberculosis/enzimologia , Streptomyces coelicolor/enzimologia , Sulfatases/química , Sulfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Glicina/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Streptomyces coelicolor/genética , Homologia Estrutural de Proteína , Sulfatases/genética
8.
Biochemistry ; 44(20): 7450-7, 2005 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-15895988

RESUMO

TeNT is the causative agent of the neuroparalytic disease tetanus. A key component of TeNT is its light chain, a Zn(2+) endopeptidase that targets SNAREs. Recent structural studies of closely related BoNT endopeptidases indicate that substrate-binding exosites remote from a conserved active site are the primary determinants of substrate specificity. Here we report the 2.3 A X-ray crystal structure of TeNT-LC, determined by combined molecular replacement and MAD phasing. As expected, the overall structure of TeNT-LC is similar to the other known CNT light chain structures, including a conserved thermolysin-like core inserted between structurally distinct amino- and carboxy-terminal regions. Differences between TeNT-LC and the other CNT light chains are mainly limited to surface features such as unique electrostatic potential profiles. An analysis of surface residue conservation reveals a pattern of relatively high variability matching the path of substrate binding around BoNT/A, possibly serving to accommodate the variations in different SNARE targets of the CNT group.


Assuntos
Metaloendopeptidases/química , Subunidades Proteicas/química , Toxina Tetânica/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Metaloendopeptidases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteínas SNARE , Eletricidade Estática , Especificidade por Substrato , Toxina Tetânica/metabolismo , Termolisina/química , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA