Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 208(2): 142-154, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37163754

RESUMO

Rationale: Children with preschool wheezing or school-age asthma are reported to have airway microbial imbalances. Objectives: To identify clusters in children with asthma or wheezing using oropharyngeal microbiota profiles. Methods: Oropharyngeal swabs from the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) pediatric asthma or wheezing cohort were characterized using 16S ribosomal RNA gene sequencing, and unsupervised hierarchical clustering was performed on the Bray-Curtis ß-diversity. Enrichment scores of the Molecular Signatures Database hallmark gene sets were computed from the blood transcriptome using gene set variation analysis. Children with severe asthma or severe wheezing were followed up for 12-18 months, with assessment of the frequency of exacerbations. Measurements and Main Results: Oropharyngeal samples from 241 children (age range, 1-17 years; 40% female) revealed four taxa-driven clusters dominated by Streptococcus, Veillonella, Rothia, and Haemophilus. The clusters showed significant differences in atopic dermatitis, grass pollen sensitization, FEV1% predicted after salbutamol, and annual asthma exacerbation frequency during follow-up. The Veillonella cluster was the most allergic and included the highest percentage of children with two or more exacerbations per year during follow-up. The oropharyngeal clusters were different in the enrichment scores of TGF-ß (transforming growth factor-ß) (highest in the Veillonella cluster) and Wnt/ß-catenin signaling (highest in the Haemophilus cluster) transcriptomic pathways in blood (all q values <0.05). Conclusions: Analysis of the oropharyngeal microbiota of children with asthma or wheezing identified four clusters with distinct clinical characteristics (phenotypes) that associate with risk for exacerbation and transcriptomic pathways involved in airway remodeling. This suggests that further exploration of the oropharyngeal microbiota may lead to novel pathophysiologic insights and potentially new treatment approaches.


Assuntos
Asma , Hipersensibilidade , Microbiota , Feminino , Masculino , Humanos , Transcriptoma , Sons Respiratórios/genética , Asma/genética , Microbiota/genética
2.
Am J Respir Crit Care Med ; 204(2): 149-158, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33730519

RESUMO

Rationale: Childhood asthma is often preceded by recurrent episodes of asthma-like symptoms, which can be triggered by both viral and bacterial agents. Recent randomized controlled trials have shown that azithromycin treatment reduces episode duration and severity through yet undefined mechanisms. Objectives: To study the influence of the airway microbiota on the effect of azithromycin treatment during acute episodes of asthma-like symptoms. Methods: Children from the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) cohort with recurrent asthma-like symptoms aged 12-36 months were randomized during acute episodes to azithromycin or placebo as previously reported. Before randomization, hypopharyngeal aspirates were collected and examined by 16S ribosomal RNA gene amplicon sequencing. Measurements and Main Results: In 139 airway samples from 68 children, episode duration after randomization was associated with microbiota richness (7.5% increased duration per 10 additional operational taxonomic units [OTUs]; 95% confidence interval, 1-14%; P = 0.025), with 15 individual OTUs (including several Neisseria and Veillonella), and with microbial pneumotypes defined from weighted UniFrac distances (longest durations in a Neisseria-dominated pneumotype). Microbiota richness before treatment increased the effect of azithromycin by 10% per 10 additional OTUs, and more OTUs were positively versus negatively associated with an increased azithromycin effect (82 vs. 58; P = 0.0032). Furthermore, effect modification of azithromycin was found for five individual OTUs (three OTUs increased and two OTUs decreased the effect; q < 0.05). Conclusions: The airway microbiota in acute episodes of asthma-like symptoms is associated with episode duration and modifies the effect of azithromycin treatment of the episodes in preschool children with recurrent asthma-like symptoms. Clinical trial registered with www.clinicaltrials.gov (NCT01233297).


Assuntos
Antibacterianos/uso terapêutico , Asma/tratamento farmacológico , Asma/microbiologia , Azitromicina/uso terapêutico , Microbiota/efeitos dos fármacos , Reinfecção/tratamento farmacológico , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Reinfecção/microbiologia
3.
Microb Ecol ; 78(3): 764-780, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30903202

RESUMO

We used direct DNA amplification from soil extracts to analyze microbial communities from an elevational transect in the German Alps by parallel metabarcoding of bacteria (16S rRNA), fungi (ITS2), and myxomycetes (18S rRNA). For the three microbial groups, 5710, 6133, and 261 operational taxonomic units (OTU) were found. For the latter group, we can relate OTUs to barcodes from fruit bodies sampled over a 4-year period. The alpha diversity of myxomycetes was positively correlated with that of bacteria. Vegetation type was found to be the main explanatory parameter for the community composition of all three groups and a substantial species turnover with elevation was observed. Bacteria and fungi display similar community responses, driven by symbiont species and plant substrate quality. Myxamoebae show a more patchy distribution, though still clearly stratified between taxa, which seems to be a response to both structural properties of the habitat and interaction with specific bacterial and fungal taxa. Finally, we report a high number of myxomycete OTUs not represented in a reference database from fructifications, which might represent novel species.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Mixomicetos/isolamento & purificação , Solo/parasitologia , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , DNA Fúngico/genética , DNA de Protozoário/genética , Fungos/classificação , Fungos/genética , Alemanha , Mixomicetos/genética , Filogenia , RNA Ribossômico 18S/genética , Microbiologia do Solo
4.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29330184

RESUMO

Extreme habitats are not only limited to natural environments, but also exist in manmade systems, for instance, household appliances such as dishwashers. Limiting factors, such as high temperatures, high and low pHs, high NaCl concentrations, presence of detergents, and shear force from water during washing cycles, define microbial survival in this extreme system. Fungal and bacterial diversity in biofilms isolated from rubber seals of 24 different household dishwashers was investigated using next-generation sequencing. Bacterial genera such as Pseudomonas, Escherichia, and Acinetobacter, known to include opportunistic pathogens, were represented in most samples. The most frequently encountered fungal genera in these samples belonged to Candida, Cryptococcus, and Rhodotorula, also known to include opportunistic pathogenic representatives. This study showed how specific conditions of the dishwashers impact the abundance of microbial groups and investigated the interkingdom and intrakingdom interactions that shape these biofilms. The age, usage frequency, and hardness of incoming tap water of dishwashers had significant impact on bacterial and fungal community compositions. Representatives of Candida spp. were found at the highest prevalence (100%) in all dishwashers and are assumed to be one of the first colonizers in recently purchased dishwashers. Pairwise correlations in tested microbiomes showed that certain bacterial groups cooccur, as did the fungal groups. In mixed bacterial-fungal biofilms, early adhesion, contact, and interactions were vital in the process of biofilm formation, where mixed complexes of bacteria and fungi could provide a preliminary biogenic structure for the establishment of these biofilms.IMPORTANCE Worldwide demand for household appliances, such as dishwashers and washing machines, is increasing, as is the number of immunocompromised individuals. The harsh conditions in household dishwashers should prevent the growth of most microorganisms. However, our research shows that persisting polyextremotolerant groups of microorganisms in household appliances are well established under these unfavorable conditions and supported by the biofilm mode of growth. The significance of our research is in identifying the microbial composition of biofilms formed on dishwasher rubber seals, how diverse abiotic conditions affect microbiota, and which key microbial members were represented in early colonization and contamination of dishwashers, as these appliances can present a source of domestic cross-contamination that leads to broader medical impacts.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Fungos/fisiologia , Utensílios Domésticos , Microbiota/fisiologia , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação
5.
BMC Microbiol ; 18(1): 223, 2018 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-30579350

RESUMO

BACKGROUND: We performed a 12-month cohort study of the stability and resilience of the intestinal microbiota of healthy children in daycare in Denmark in relation to diarrheal events and exposure to known risk factors for gastrointestinal health such as travelling and antibiotic use. In addition, we analyzed how gut microbiota recover from such exposures. RESULTS: We monitored 32 children in daycare aged 1-6 years. Fecal samples were submitted every second month during a one-year observational period. Information regarding exposures and diarrheal episodes was obtained through questionnaires. Bacterial communities were identified using 16S rRNA gene sequencing. The core microbiota (mean abundance > 95%) dominated the intestinal microbiota, and none of the tested exposures (diarrheal events, travel, antibiotic use) were associated with decreases in the relative abundance of the core microbiota. Samples exhibited lower intra-individual variation than inter-individual variation. Half of all the variation between samples was explained by which child a sample originated from. Age explained 7.6-9.6% of the variation, while traveling, diarrheal events, and antibiotic use explained minor parts of the beta diversity. We found an age-dependent increase of alpha diversity in children aged 1-3 years, and while diarrheal events caused a decrease in alpha diversity, a recovery time of 40-45 days was observed. Among children having had a diarrheal event, we observed a 10x higher relative abundance of Prevotella. After travelling, a higher abundance of two Bacteroides species and 40% less Lachnospiraceae were seen. Antibiotic use did not correlate with changes in the abundance of any bacteria. CONCLUSION: We present data showing that Danish children in daycare have stable intestinal microbiota, resilient to the exposures investigated. An early age-dependent increase in the diversity was demonstrated. Diarrheal episodes decreased alpha diversity with an estimated recovery time of 40-45 days.


Assuntos
Bactérias/isolamento & purificação , Creches/estatística & dados numéricos , Microbioma Gastrointestinal , Intestinos/microbiologia , Fatores Etários , Bactérias/classificação , Bactérias/genética , Criança , Pré-Escolar , Estudos de Coortes , Dinamarca , Diarreia/microbiologia , Fezes/microbiologia , Feminino , Humanos , Lactente , Masculino , Filogenia
6.
J Med Primatol ; 47(6): 393-401, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30039863

RESUMO

INTRODUCTION: Gut microbial communities are critical players in the pathogenesis of obesity. Pregnancy is associated with increased bacterial load and changes in gut bacterial diversity. Sparse data exist regarding composition of gut microbial communities in obesity combined with pregnancy. MATERIAL AND METHODS: Banked tissues were collected under sterile conditions during necropsy, from three non-obese (nOb) and four obese (Ob) near-term pregnant baboons. Sequences were assigned taxonomy using the Ribosomal Database Project classifier. Microbiome abundance and its difference between distinct groups were assessed by a nonparametric test. RESULTS: Three families predominated in both the nOb and Ob colonic microbiome: Prevotellaceae (25.98% and 32.71% respectively), Ruminococcaceae (12.96% and 7.48%), and Lachnospiraceae (8.78% and 11.74%). Seven families of the colon microbiome displayed differences between Ob and nOb groups. CONCLUSION: Changes in gut microbiome in pregnant obese animals open the venue for dietary manipulation in pregnancy.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Doenças dos Macacos/microbiologia , Obesidade/microbiologia , Papio/microbiologia , Animais , Bactérias/classificação , Feminino , Gravidez
7.
Environ Int ; 158: 106899, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598063

RESUMO

Antibiotic-resistant pathogens constitute an escalating public health concern. Hence a better understanding of the underlying processes responsible for this expansion is urgently needed. Co-selection of heavy metal/biocide and antibiotic resistance genes (ARGs) has been suggested as one potential mechanism promoting the proliferation of antimicrobial resistance (AMR). This paper aims to elucidate this interplay and exploit differences in antibiotic usage to infer patterns of co-selection by the non-antibiotic factors metals and biocides in the context of pig farming. We examined 278 gut metagenomes from pigs with continuous antibiotic exposure, only at weaning and at no exposure. Metals as growth promoters and biocides as disinfectants are currently used with little restrictions in stock farming. The pigs under continuous antibiotic exposure displayed the highest co-occurrence of ARGs and other genetic elements while the pigs under limited use of antibiotics still showed abundant co-occurrences. Pathogens belonging to Enterobacteriaceae displayed increased co-occurrence phenomena, suggesting that this maintenance is not a random selection process from a mobilized pool but pertains to specific phylogenetic clades. These results suggest that metals and biocides displayed strong selective pressures on ARGs exerted by intensive farming, regardless of the current use of antibiotics.


Assuntos
Desinfetantes , Metais Pesados , Animais , Antibacterianos/farmacologia , Genes Bacterianos , Metagenoma , Metais Pesados/toxicidade , Filogenia , Suínos
8.
Gut Microbes ; 14(1): 2005407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34965188

RESUMO

Type 2 diabetes (T2D) management is based on combined pharmacological and lifestyle intervention approaches. While their clinical benefits are well studied, less is known about their effects on the gut microbiota. We aimed to investigate if an intensive lifestyle intervention combined with conventional standard care leads to a different gut microbiota composition compared to standard care alone treatment in individuals with T2D, and if gut microbiota is associated with the clinical benefits of the treatments. Ninety-eight individuals with T2D were randomized to either an intensive lifestyle intervention combined with standard care group (N = 64), or standard care alone group (N = 34) for 12 months. All individuals received standardized, blinded, target-driven medical therapy, and individual counseling. The lifestyle intervention group moreover received intensified physical training and dietary plans. Clinical characteristics and fecal samples were collected at baseline, 3-, 6-, 9-, and 12-month follow-up. The gut microbiota was profiled with 16S rRNA gene amplicon sequencing. There were no statistical differences in the change of gut microbiota composition between treatments after 12 months, except minor and transient differences at month 3. The shift in gut microbiota alpha diversity at all time windows did not correlate with the change in clinical characteristics, and the gut microbiota did not mediate the treatment effect on clinical characteristics. The clinical benefits of intensive lifestyle and/or pharmacological interventions in T2D are unlikely to be explained by, or causally related to, changes in the gut microbiota composition.


Assuntos
Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/psicologia , Microbioma Gastrointestinal , Estilo de Vida , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Dieta , Exercício Físico , Fezes/microbiologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade
9.
Sci Total Environ ; 755(Pt 2): 142702, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33049532

RESUMO

Environmental selection of antibiotic resistance genes (ARGs) is considered to be caused by antibiotic or metal residues, frequently used in livestock. In this study we examined three commercial poultry farms to correlate the co-occurrence patterns of antibiotic and metal residues to the presence of ARGs. We quantified 283 ARGs, 12 mobile genetic elements (MGEs), 49 targeted antibiotics, 7 heavy metals and sequenced 16S rRNA genes. The abundance and type of ARG were significantly enriched in manure while soil harbored the most diverse bacterial community. Procrustes analysis displayed significant correlations between ARGs/MGEs and the microbiome. Cadmium (Cd), arsenic (As), zinc (Zn), copper (Cu) and lead (Pb) were responsible for a majority of positive correlations to ARGs when compared to antibiotics. Integrons and transposons co-occurred with ARGs corresponding to 9 classes of antibiotics, especially Class1 integrase intI-1LC. Redundancy analysis (RDA) and Variance partitioning analysis (VPA) showed that antibiotics, metals, MGEs and bacteria explain solely 0.7%, 5.7%, 12.4%, and 21.9% of variances of ARGs in the microbial community, respectively. These results suggested that bacterial composition and horizontal gene transfer were the major factors shaping the composition of ARGs; Metals had a bigger effect on ARG profile than detected antibiotics in this study.


Assuntos
Antibacterianos , Metais Pesados , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Fazendas , Genes Bacterianos , Sequências Repetitivas Dispersas , Esterco , Aves Domésticas , RNA Ribossômico 16S/genética
10.
Elife ; 102021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448927

RESUMO

Early-life microbiota has been linked to the development of chronic inflammatory diseases. It has been hypothesized that maternal vaginal microbiota is an important initial seeding source and therefore might have lifelong effects on disease risk. To understand maternal vaginal microbiota's role in seeding the child's microbiota and the extent of delivery mode-dependent transmission, we studied 665 mother-child dyads from the COPSAC2010 cohort. The maternal vaginal microbiota was evaluated twice in the third trimester and compared with the children's fecal (at 1 week, 1 month, and 1 year of age) and airway microbiota (at 1 week, 1 month, and 3 months). Based on the concept of weighted transfer ratios (WTRs), we have identified bacterial orders for which the WTR displays patterns indicate persistent or transient transfer from the maternal vaginal microbiome, as well as orders that are shared at later time points independent of delivery mode, indicating a common reservoir.


Assuntos
Microbiota , Mães , Vagina/microbiologia , Adulto , Feminino , Humanos , Lactente , Recém-Nascido , Relações Mãe-Filho , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA