Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
CA Cancer J Clin ; 69(4): 305-343, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31116423

RESUMO

The world of molecular profiling has undergone revolutionary changes over the last few years as knowledge, technology, and even standard clinical practice have evolved. Broad molecular profiling is now nearly essential for all patients with metastatic solid tumors. New agents have been approved based on molecular testing instead of tumor site of origin. Molecular profiling methodologies have likewise changed such that tests that were performed on patients a few years ago are no longer complete and possibly inaccurate today. As with all rapid change, medical providers can quickly fall behind or struggle to find up-to-date sources to ensure he or she provides optimum care. In this review, the authors provide the current state of the art for molecular profiling/precision medicine, practice standards, and a view into the future ahead.


Assuntos
Técnicas Genéticas , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , Biomarcadores/análise , Humanos , Terapia de Alvo Molecular , Mutação , Neoplasias/diagnóstico
2.
Breast Cancer Res ; 25(1): 131, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904250

RESUMO

BACKGROUND: Mammary physiology is distinguished in containing adult stem/progenitor cells that are actively amending the breast tissue throughout the reproductive lifespan of women. Despite their importance in both mammary gland development, physiological maintenance, and reproduction, the exact role of mammary stem/progenitor cells in mammary tumorigenesis has not been fully elucidated in humans or animal models. The implications of modulating adult stem/progenitor cells in women could lead to a better understanding of not only their function, but also toward possible breast cancer prevention led us to evaluate the efficacy of rapamycin in reducing mammary stem/progenitor cell activity and malignant progression markers. METHODS: We analyzed a large number of human breast tissues for their basal and luminal cell composition with flow cytometry and their stem and progenitor cell function with sphere formation assay with respect to age and menopausal status in connection with a clinical study (NCT02642094) involving a low-dose (2 mg/day) and short-term (5-7 days) treatment of the mTOR inhibitor sirolimus. The expression of biomarkers in biopsies and surgical breast samples were measured with quantitative analysis of immunohistochemistry. RESULTS: Sirolimus treatment significantly abrogated mammary stem cell activity, particularly in postmenopausal patients. It did not affect the frequency of luminal progenitors but decreased their self-renewal capacity. While sirolimus had no effect on basal cell population, it decreased luminal cell population, particularly in postmenopausal patients. It also significantly diminished prognostic biomarkers associated with breast cancer progression from ductal carcinoma in situ to invasive breast cancer including p16INK4A, COX-2, and Ki67, as well as markers of the senescence-associated secretary phenotype, thereby possibly functioning in preventing early breast cancer progression. CONCLUSION: Overall, these findings indicate a link from mTOR signaling to mammary stem and progenitor cell activity and cancer progression. Trial registration This study involves a clinical trial registered under the ClinicalTrials.gov identifier NCT02642094 registered December 30, 2015.


Assuntos
Neoplasias da Mama , Animais , Humanos , Feminino , Neoplasias da Mama/genética , Glândulas Mamárias Animais/metabolismo , Células-Tronco/metabolismo , Biomarcadores/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Sirolimo/metabolismo , Células Epiteliais/metabolismo
3.
Stem Cells ; 39(5): 536-550, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33470499

RESUMO

Glioblastoma (GBM) is the most common and deadliest tumor of the central nervous system. GBM has poor prognosis and glioma stem cells (GSCs) are implicated in tumor initiation and therapy resistance. Estrogen receptor ß (ERß) is expressed in GBM and exhibit tumor suppressive function. However, the role of ERß in GSCs and the therapeutic potential of ERß agonists on GSCs remain largely unknown. Here, we examined whether ERß modulates GSCs stemness and tested the utility of two ERß selective agonists (LY500307 and Liquiritigenin) to reduce the stemness of GSCs. The efficacy of ERß agonists was examined on GSCs isolated from established and patient derived GBMs. Our results suggested that knockout of ERß increased the proportion of CD133+ and SSEA+ positive GSCs and overexpression of ERß reduced the proportion of GSCs in GBM cells. Overexpression of ERß or treatment with ERß agonists significantly inhibited the GSCs cell viability, neurosphere formation, self-renewal ability, induced the apoptosis and reduced expression of stemness markers in GSCs. RNA sequencing analysis revealed that ERß agonist modulate pathways related to stemness, differentiation and apoptosis. Mechanistic studies showed that ERß overexpression or agonist treatment reduced glutamate receptor signaling pathway and induced apoptotic pathways. In orthotopic models, ERß overexpression or ERß agonists treatment significantly reduced the GSCs mediated tumor growth and improved the mice overall survival. Immunohistochemical studies demonstrated that ERß overexpression decreased SOX2 and GRM3 expression and increased expression of GFAP in tumors. These results suggest that ERß activation could be a promising therapeutic strategy to eradicate GSCs.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Receptor beta de Estrogênio/genética , Glioma/genética , Células-Tronco Neoplásicas/metabolismo , Antígeno AC133/genética , Animais , Apoptose/efeitos dos fármacos , Benzopiranos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptor beta de Estrogênio/agonistas , Flavanonas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores de Glutamato/genética , Fatores de Transcrição SOXB1/genética , Transdução de Sinais/efeitos dos fármacos , Antígenos Embrionários Estágio-Específicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Breast Cancer Res Treat ; 187(2): 375-386, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33893909

RESUMO

PURPOSE: The majority of breast cancers are estrogen receptor (ERα) positive making endocrine therapy a mainstay for these patients. Unfortunately, resistance to endocrine therapy is a common occurrence. Fatty acid synthase (FASN) is a key enzyme in lipid biosynthesis and its expression is commensurate with tumor grade and resistance to numerous therapies. METHODS: The effect of the FASN inhibitor TVB-3166 on ERα expression and cell growth was characterized in tamoxifen-resistant cell lines, xenografts, and patient explants. Subcellular localization of ERα was assessed using subcellular fractionations. Palmitoylation and ubiquitination of ERα were assessed by immunoprecipitation. ERα and p-eIF2α protein levels were analyzed by Western blotting after treatment with TVB-3166 with or without the addition of palmitate or BAPTA. RESULTS: TVB-3166 treatment leads to a marked inhibition of proliferation in tamoxifen-resistant cells compared to the parental cells. Additionally, TVB-3166 significantly inhibited tamoxifen-resistant breast tumor growth in mice and decreased proliferation of primary tumor explants compared to untreated controls. FASN inhibition significantly reduced ERα levels most prominently in endocrine-resistant cells and altered its subcellular localization. Furthermore, we showed that the reduction of ERα expression upon TVB-3166 treatment is mediated through the induction of endoplasmic reticulum stress. CONCLUSION: Our preclinical data provide evidence that FASN inhibition by TVB-3166 presents a promising therapeutic strategy for the treatment of endocrine-resistant breast cancer. Further clinical development of FASN inhibitors for endocrine-resistant breast cancer should be considered.


Assuntos
Neoplasias da Mama , Inibidores Enzimáticos/uso terapêutico , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/genética , Ácido Graxo Sintase Tipo I/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Tamoxifeno/farmacologia
5.
Breast Cancer Res Treat ; 185(2): 343-357, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33057995

RESUMO

PURPOSE: Cancer stem cells (CSCs) are highly tumorigenic, spared by chemotherapy, sustain tumor growth, and are implicated in tumor recurrence after conventional therapies in triple negative breast cancer (TNBC). Lysine-specific histone demethylase 1A (KDM1A) is highly expressed in several human malignancies and CSCs including TNBC. However, the precise mechanistic role of KDM1A in CSC functions and therapeutic utility of KDM1A inhibitor for treating TNBC is poorly understood. METHODS: The effect of KDM1A inhibition on cell viability, apoptosis, and invasion were examined by Cell Titer Glo, Caspase 3/7 Glo, and matrigel invasion assays, respectively. Stemness and self-renewal of CSCs were examined using mammosphere formation and extreme limiting dilution assays. Mechanistic studies were conducted using RNA-sequencing, RT-qPCR, Western blotting and reporter gene assays. Mouse xenograft and patient derived xenograft models were used for preclinical evaluation of KDM1A inhibitor. RESULTS: TCGA data sets indicated that KDM1A is highly expressed in TNBC. CSCs express high levels of KDM1A and inhibition of KDM1A reduced the CSCs enrichment in TNBC cells. KDM1A inhibition reduced cell viability, mammosphere formation, self-renewal and promoted apoptosis of CSCs. Mechanistic studies suggested that IL6-JAK-STAT3 and EMT pathways were downregulated in KDM1A knockdown and KDM1A inhibitor treated cells. Importantly, doxycycline inducible knockout of KDM1A reduced tumor progression in orthotopic xenograft models and KDM1A inhibitor NCD38 treatment significantly reduced tumor growth in patient derived xenograft (PDX) models. CONCLUSIONS: Our results establish that KDM1A inhibition mitigates CSCs functions via inhibition of STAT3 and EMT signaling, and KDM1A inhibitor NCD38 may represent a novel class of drug for treating TNBC.


Assuntos
Histona Desmetilases , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Camundongos , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Lasers Surg Med ; 53(10): 1386-1394, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34130353

RESUMO

BACKGROUND AND OBJECTIVES: Despite rapid advances and discoveries in medical imaging, monitoring therapeutic efficacy for malignant gliomas and monitoring tumor vasculature remains problematic. The purpose of this study is to utilize optical coherence angiography for vasculature characterization inside and surrounding brain tumors in a murine xenograft brain tumor model. Features included in our analysis include fractional blood volume, vessel tortuosity, diameter, orientation, and directionality. STUDY DESIGN/MATERIALS AND METHODS: In this study, five tumorous mice models at 4 weeks of age were imaged. Human glioblastoma cells were injected into the brain and allowed to grow for 4 weeks and then imaged using optical coherence tomography. RESULTS: Results suggest that blood vessels outside the tumor contain a greater fractional blood volume as compared with vessels inside the tumor. Vessels inside the tumor are more tortuous as compared with those outside the tumor. Results indicate that vessels near the tumor margin are directed inward towards the tumor while normal vessels show a more random orientation. CONCLUSION: Quantification of vascular microenvironments in brain gliomas can provide functional vascular parameters to aid various diagnostic and therapeutic studies. © 2021 Wiley Periodicals LLC.


Assuntos
Neoplasias Encefálicas , Angiografia , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Diferenciação Celular , Angiofluoresceinografia , Humanos , Camundongos , Microvasos/diagnóstico por imagem , Tomografia de Coerência Óptica , Microambiente Tumoral
7.
Nucleic Acids Res ; 47(10): 5086-5099, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30982901

RESUMO

BRCA1-associated basal-like breast cancer originates from luminal progenitor cells. Breast epithelial cells from cancer-free BRCA1 mutation carriers are defective in luminal differentiation. However, how BRCA1 deficiency leads to lineage-specific differentiation defect is not clear. BRCA1 is implicated in resolving R-loops, DNA-RNA hybrid structures associated with genome instability and transcriptional regulation. We recently showed that R-loops are preferentially accumulated in breast luminal epithelial cells of BRCA1 mutation carriers. Here, we interrogate the impact of a BRCA1 mutation-associated R-loop located in a putative transcriptional enhancer upstream of the ERα-encoding ESR1 gene. Genetic ablation confirms the relevance of this R-loop-containing region to enhancer-promoter interactions and transcriptional activation of the corresponding neighboring genes, including ESR1, CCDC170 and RMND1. BRCA1 knockdown in ERα+ luminal breast cancer cells increases intensity of this R-loop and reduces transcription of its neighboring genes. The deleterious effect of BRCA1 depletion on transcription is mitigated by ectopic expression of R-loop-removing RNase H1. Furthermore, RNase H1 overexpression in primary breast cells from BRCA1 mutation carriers results in a shift from luminal progenitor cells to mature luminal cells. Our findings suggest that BRCA1-dependent R-loop mitigation contributes to luminal cell-specific transcription and differentiation, which could in turn suppress BRCA1-associated tumorigenesis.


Assuntos
Proteína BRCA1/genética , Mama/metabolismo , Elementos Facilitadores Genéticos , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína BRCA1/metabolismo , Sistemas CRISPR-Cas , Carcinogênese , Diferenciação Celular , Receptor alfa de Estrogênio/genética , Feminino , Deleção de Genes , Genes BRCA1 , Células HEK293 , Heterozigoto , Humanos , Células MCF-7 , Mutação , Transcrição Gênica
8.
Br J Cancer ; 122(11): 1630-1637, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32238921

RESUMO

BACKGROUND: In this first-in-human, Phase 1 study of a microRNA-based cancer therapy, the recommended Phase 2 dose (RP2D) of MRX34, a liposomal mimic of microRNA-34a (miR-34a), was determined and evaluated in patients with advanced solid tumours. METHODS: Adults with various solid tumours refractory to standard treatments were enrolled in 3 + 3 dose-escalation cohorts and, following RP2D determination, expansion cohorts. MRX34, with oral dexamethasone premedication, was given intravenously daily for 5 days in 3-week cycles. RESULTS: Common all-cause adverse events observed in 85 patients enrolled included fever (% all grade/G3: 72/4), chills (53/14), fatigue (51/9), back/neck pain (36/5), nausea (36/1) and dyspnoea (25/4). The RP2D was 70 mg/m2 for hepatocellular carcinoma (HCC) and 93 mg/m2 for non-HCC cancers. Pharmacodynamic results showed delivery of miR-34a to tumours, and dose-dependent modulation of target gene expression in white blood cells. Three patients had PRs and 16 had SD lasting ≥4 cycles (median, 19 weeks, range, 11-55). CONCLUSION: MRX34 treatment with dexamethasone premedication demonstrated a manageable toxicity profile in most patients and some clinical activity. Although the trial was closed early due to serious immune-mediated AEs that resulted in four patient deaths, dose-dependent modulation of relevant target genes provides proof-of-concept for miRNA-based cancer therapy. CLINICAL TRIAL REGISTRATION: NCT01829971.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , MicroRNAs/administração & dosagem , MicroRNAs/efeitos adversos , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacocinética , Feminino , Humanos , Lipossomos/efeitos adversos , Lipossomos/farmacocinética , Masculino , Dose Máxima Tolerável , MicroRNAs/farmacocinética , Pessoa de Meia-Idade , Nanopartículas/administração & dosagem , Nanopartículas/efeitos adversos
9.
Anal Chem ; 92(1): 1260-1267, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31765123

RESUMO

Antibody-drug conjugates (ADCs) have gained significant interest over the past few years due to their targeted delivery, higher efficacy, decreased toxicity and improved therapeutic index over conventional anticancer therapies. Sacituzumab govitecan (SG) is an ADC composed of a Trop-2-targeted antibody conjugated to the cytotoxic payload SN-38. SG is currently being evaluated in clinical trials of several solid cancers. In this nonclinical study, we have developed a highly sensitive and selective approach to measure free and total SN-38 and its glucuronidation metabolite (SN-38G) using stable isotope dilution (SID) ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). An efficient and fast hydrolysis procedure (2 h at 100 °C) was established to release SN-38, conjugated to the antibody by carbonate linkage. The assay involves the extraction of free SN-38, SN-38G by protein precipitation, and subsequent acid hydrolysis of the protein layer to release antibody-bound SN-38. The developed UHPLC-HRMS method resulted in good linearity (r2 ≥ 0.997), accuracy (RE ≤ ± 9.1%), precision (CVs ≤ 7.7%), and extraction recoveries (85.6-109.3%). The validated method was applied in the plasma and tumor of mice bearing human brain (U251) and breast (MDA-MB-468) tumor xenografts treated with a single dose (0.5 mg) of SG for 6 h. Results revealed the presence of trace level of SN-38G and free SN-38 in plasma, which suggests an improved therapeutic index of SG. The established method makes a significant contribution to the assessment of SG in different cancers.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Modelos Animais de Doenças , Imunoconjugados/farmacologia , Técnicas de Diluição do Indicador , Irinotecano/análise , Irinotecano/farmacologia , Administração Intravenosa , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Camptotecina/administração & dosagem , Camptotecina/química , Camptotecina/farmacologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Irinotecano/química , Espectrometria de Massas , Camundongos , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico
10.
Mol Carcinog ; 59(3): 281-292, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31872914

RESUMO

Medulloblastoma (MB) is the most common and deadliest brain tumor in children. Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein and its oncogenic signaling is implicated in the progression of several cancers. However, the role of PELP1 in the progression of MB remains unknown. The objective of this study is to examine the role of PELP1 in the progression of MB. Immunohistochemical analysis of MB tissue microarrays revealed that PELP1 is overexpressed in the MB specimens compared to normal brain. Knockdown of PELP1 reduced cell proliferation, cell survival, and cell invasion of MB cell lines. The RNA-sequencing analysis revealed that PELP1 knockdown significantly downregulated the pathways related to inflammation and extracellular matrix. Gene set enrichment analysis confirmed that the PELP1-regulated genes were negatively correlated with nuclear factor-κB (NF-κB), extracellular matrix, and angiogenesis gene sets. Interestingly, PELP1 knockdown reduced the expression of NF-κB target genes, NF-κB reporter activity, and inhibited the nuclear translocation of p65. Importantly, the knockdown of PELP1 significantly reduced in vivo MB progression in orthotopic models and improved the overall mice survival. Collectively, these results suggest that PELP1 could be a novel target for therapeutic intervention in MB.


Assuntos
Neoplasias Cerebelares/metabolismo , Proteínas Correpressoras/metabolismo , Meduloblastoma/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Proteínas Correpressoras/análise , Proteínas Correpressoras/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Fatores de Transcrição/análise , Fatores de Transcrição/genética
11.
J Transl Med ; 16(1): 142, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843811

RESUMO

BACKGROUND: Standard therapy for glioblastoma includes surgery, radiotherapy, and temozolomide. This Phase 3 trial evaluates the addition of an autologous tumor lysate-pulsed dendritic cell vaccine (DCVax®-L) to standard therapy for newly diagnosed glioblastoma. METHODS: After surgery and chemoradiotherapy, patients were randomized (2:1) to receive temozolomide plus DCVax-L (n = 232) or temozolomide and placebo (n = 99). Following recurrence, all patients were allowed to receive DCVax-L, without unblinding. The primary endpoint was progression free survival (PFS); the secondary endpoint was overall survival (OS). RESULTS: For the intent-to-treat (ITT) population (n = 331), median OS (mOS) was 23.1 months from surgery. Because of the cross-over trial design, nearly 90% of the ITT population received DCVax-L. For patients with methylated MGMT (n = 131), mOS was 34.7 months from surgery, with a 3-year survival of 46.4%. As of this analysis, 223 patients are ≥ 30 months past their surgery date; 67 of these (30.0%) have lived ≥ 30 months and have a Kaplan-Meier (KM)-derived mOS of 46.5 months. 182 patients are ≥ 36 months past surgery; 44 of these (24.2%) have lived ≥ 36 months and have a KM-derived mOS of 88.2 months. A population of extended survivors (n = 100) with mOS of 40.5 months, not explained by known prognostic factors, will be analyzed further. Only 2.1% of ITT patients (n = 7) had a grade 3 or 4 adverse event that was deemed at least possibly related to the vaccine. Overall adverse events with DCVax were comparable to standard therapy alone. CONCLUSIONS: Addition of DCVax-L to standard therapy is feasible and safe in glioblastoma patients, and may extend survival. Trial registration Funded by Northwest Biotherapeutics; Clinicaltrials.gov number: NCT00045968; https://clinicaltrials.gov/ct2/show/NCT00045968?term=NCT00045968&rank=1 ; initially registered 19 September 2002.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Glioblastoma/imunologia , Glioblastoma/terapia , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico , Vacinas Anticâncer/efeitos adversos , Determinação de Ponto Final , Feminino , Glioblastoma/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
12.
J Transl Med ; 16(1): 179, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29958537

RESUMO

Following publication of the original article [1], the authors reported an error in the spelling of one of the author names. In this Correction the incorrect and correct author names are indicated and the author name has been updated in the original publication. The authors also reported an error in the Methods section of the original article. In this Correction the incorrect and correct versions of the affected sentence are indicated. The original article has not been updated with regards to the error in the Methods section.

13.
J Neurooncol ; 139(2): 469-478, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29846894

RESUMO

INTRODUCTION: Surgery and radiation therapy are the standard treatment options for meningiomas, but these treatments are not always feasible. Expression profiling was performed to determine the presence of therapeutic actionable biomarkers for prioritization and selection of agents. METHODS: Meningiomas (n = 115) were profiled using a variety of strategies including next-generation sequencing (592-gene panel: n = 14; 47-gene panel: n = 94), immunohistochemistry (n = 8-110), and fluorescent and chromogenic in situ hybridization (n = 5-70) to determine mutational and expression status. RESULTS: The median age of patients in the cohort was 60 years, with a range spanning 6-90 years; 52% were female. The most frequently expressed protein markers were EGFR (93%; n = 44), followed by PTEN (77%; n = 110), BCRP (75%; n = 8), MRP1 (65%, n = 23), PGP (62%; n = 84), and MGMT (55%; n = 97). The most frequent mutation among all meningioma grades occurred in the NF2 gene at 85% (11/13). Recurring mutations in SMO and AKT1 were also occasionally detected. PD-L1 was expressed in 25% of grade III cases (2/8) but not in grade I or II tumors. PD-1 + T cells were present in 46% (24/52) of meningiomas. TOP2A and thymidylate synthase expression increased with grade (I = 5%, II = 22%, III = 62% and I = 5%, II = 23%, III = 47%, respectively), whereas progesterone receptor expression decreased with grade (I = 79%, II = 41%, III = 29%). CONCLUSION: If predicated on tumor expression, our data suggest that therapeutics directed toward NF2 and TOP2A could be considered for most meningioma patients.


Assuntos
Ensaios Clínicos como Assunto/métodos , Neoplasias Meníngeas/tratamento farmacológico , Neoplasias Meníngeas/metabolismo , Meningioma/tratamento farmacológico , Meningioma/metabolismo , Projetos de Pesquisa , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Criança , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/patologia , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Adulto Jovem
14.
Mol Carcinog ; 56(11): 2355-2371, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28618012

RESUMO

Despite advances in surgery and adjuvant therapy, brain tumors represent one of the leading causes of cancer-related mortality and morbidity in both adults and children. Gliomas constitute about 60% of all cerebral tumors, showing varying degrees of malignancy. They are difficult to treat due to dismal prognosis and limited therapeutics. Metabolomics is the untargeted and targeted analyses of endogenous and exogenous small molecules, which charact erizes the phenotype of an individual. This emerging "omics" science provides functional readouts of cellular activity that contribute greatly to the understanding of cancer biology including brain tumor biology. Metabolites are highly informative as a direct signature of biochemical activity; therefore, metabolite profiling has become a promising approach for clinical diagnostics and prognostics. The metabolic alterations are well-recognized as one of the key hallmarks in monitoring disease progression, therapy, and revealing new molecular targets for effective therapeutic intervention. Taking advantage of the latest high-throughput analytical technologies, that is, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), metabolomics is now a promising field for precision medicine and drug discovery. In the present report, we review the application of metabolomics and in vivo metabolic profiling in the context of adult gliomas and paediatric brain tumors. Analytical platforms such as high-resolution (HR) NMR, in vivo magnetic resonance spectroscopic imaging and high- and low-resolution MS are discussed. Moreover, the relevance of metabolic studies in the development of new therapeutic strategies for treatment of gliomas are reviewed.


Assuntos
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioma/metabolismo , Metaboloma , Metabolômica/métodos , Adulto , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Criança , Glioma/patologia , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos
15.
Invest New Drugs ; 35(2): 180-188, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27917453

RESUMO

Purpose Naturally occurring tumor suppressor microRNA-34a (miR-34a) downregulates the expression of >30 oncogenes across multiple oncogenic pathways, as well as genes involved in tumor immune evasion, but is lost or under-expressed in many malignancies. This first-in-human, phase I study assessed the maximum tolerated dose (MTD), safety, pharmacokinetics, and clinical activity of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumors. Patients and Methods Adult patients with solid tumors refractory to standard treatment were enrolled in a standard 3 + 3 dose escalation trial. MRX34 was given intravenously twice weekly (BIW) for three weeks in 4-week cycles. Results Forty-seven patients with various solid tumors, including hepatocellular carcinoma (HCC; n = 14), were enrolled. Median age was 60 years, median prior therapies was 4 (range, 1-12), and most were Caucasian (68%) and male (57%). Most common adverse events (AEs) included fever (all grade %/G3%: 64/2), fatigue (57/13), back pain (57/11), nausea (49/2), diarrhea (40/11), anorexia (36/4), and vomiting (34/4). Laboratory abnormalities included lymphopenia (G3%/G4%: 23/9), neutropenia (13/11), thrombocytopenia (17/0), increased AST (19/4), hyperglycemia (13/2), and hyponatremia (19/2). Dexamethasone premedication was required to manage infusion-related AEs. The MTD for non-HCC patients was 110 mg/m2, with two patients experiencing dose-limiting toxicities of G3 hypoxia and enteritis at 124 mg/m2. The half-life was >24 h, and Cmax and AUC increased with increasing dose. One patient with HCC achieved a prolonged confirmed PR lasting 48 weeks, and four patients experienced SD lasting ≥4 cycles. Conclusion MRX34 treatment with dexamethasone premedication was associated with acceptable safety and showed evidence of antitumor activity in a subset of patients with refractory advanced solid tumors. The MTD for the BIW schedule was 110 mg/m2 for non-HCC and 93 mg/m2 for HCC patients. Additional dose schedules of MRX34 have been explored to improve tolerability.


Assuntos
Antineoplásicos/administração & dosagem , MicroRNAs/administração & dosagem , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Esquema de Medicação , Feminino , Humanos , Lipossomos , Masculino , Dose Máxima Tolerável , MicroRNAs/efeitos adversos , MicroRNAs/farmacocinética , MicroRNAs/uso terapêutico , Pessoa de Meia-Idade , Nanopartículas/administração & dosagem , Nanopartículas/efeitos adversos , Neoplasias/metabolismo , Resultado do Tratamento
16.
Neurobiol Dis ; 85: 227-233, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26094595

RESUMO

Glioblastoma (GBM, Grade IV astrocytoma) is the most common and most aggressive of the primary malignant brain tumors in adults. Hypoxia is a distinct feature in GBM and plays a significant role in tumor progression, resistance to treatment and poor outcomes. This review considers the effects of hypoxia on astrocytic tumors and the mechanisms that contribute to tumor progression and therapeutic resistance, with a focus on the vascular changes, chemotaxic signaling pathways and metabolic alterations involved.


Assuntos
Astrocitoma/fisiopatologia , Astrocitoma/terapia , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/terapia , Hipóxia/fisiopatologia , Animais , Humanos
17.
Breast Cancer Res Treat ; 149(1): 49-57, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25476497

RESUMO

Obesity is associated with a worse breast cancer prognosis, particularly in estrogen receptor alpha (ERα) positive, postmenopausal patients. We hypothesized that this is mediated in part by an elevation in breast cancer cell cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production that results in greater local pre-adipocyte aromatase expression. We utilized an in vitro model of the obese patient's tumor microenvironment in which cultured MCF-7 breast cancer cells and pre-adipocytes were exposed to pooled serum from obese (OB; BMI ≥ 30.0 kg/m(2)) or normal weight (N; BMI 18.5-24.9 kg/m(2)) postmenopausal women. Exposure to OB versus N sera significantly increased MCF-7 cell COX-2 expression and PGE2 production. Pre-adipocyte aromatase expression was 89 % greater following culture in conditioned media (CM) from MCF-7 cells exposed to OB versus N sera (OB-CM and N-CM, respectively), a difference nullified by MCF-7 cell treatment with the COX-2 inhibitor celecoxib. Previous analysis of the sera revealed significantly higher interleukin-6 (IL-6) concentrations in the OB versus N samples. Depletion of IL-6 from the sera neutralized the difference in pre-adipocyte aromatase expression stimulated by OB-CM versus N-CM. Finally, CM from pre-adipocyte/MCF-7 cell co-cultures exposed to OB sera stimulated greater MCF-7 and T47D breast cancer cell ERα activity and proliferation in comparison to N sera. This study indicates that obesity-associated systemic IL-6 indirectly enhances pre-adipocyte aromatase expression via increased breast cancer cell PGE2 production. Investigation regarding the efficacy of a COX-2 inhibitor/aromatase inhibitor combination therapy in the obese postmenopausal patient population is warranted.


Assuntos
Aromatase/biossíntese , Neoplasias da Mama/genética , Dinoprostona/biossíntese , Interleucina-6/genética , Obesidade/genética , Adipócitos/enzimologia , Inibidores da Aromatase/administração & dosagem , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/biossíntese , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/imunologia , Células MCF-7 , Obesidade/complicações , Obesidade/patologia
18.
J Neurooncol ; 124(3): 365-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26108658

RESUMO

Glioblastoma multiforme (GBM) is among the most highly vascularized of solid tumors, contributing to the infiltrative nature of the disease, and conferring poor outcome. Due to the critical dependency of GBM on growth of new endothelial vasculature, we evaluated the preclinical activity of a novel adenoviral gene therapy that targets the endothelium within newly formed blood vessels for apoptosis. VB-111, currently in phase II clinical trials, consists of a non-replicating Adenovirus 5 (El deleted) carrying a proapoptotic human Fas-chimera (transgene) under the control of a modified murine promoter (PPE-1-3×) which specifically targets endothelial cells within the tumor vasculature. Here we report that a single intravenous dose of 2.5 × 10(11) or 1 × 10(11) VPs was sufficient to extend survival in nude rats bearing U87MG-luc2 or nude mice bearing U251-luc, respectively. Bioluminescence imaging of nude rats showed that VB-111 effectively inhibited tumor growth within four weeks of treatment. This was confirmed in a select group of animals by MRI. In our mouse model we observed that 3 of 10 nude mice treated with VB-111 completely lost U251 luciferase signal and were considered long term survivors. To assess the antiangiogenic effects of VB-111, we evaluated the tumor-associated microvaculature by CD31, a common marker of neovascularization, and found a significant decrease in the microvessel density by IHC. We further assessed the neovasculature by confocal microscopy and found that VB-111 inhibits vascular density in two separate mouse models bearing U251-RFP xenografts. Collectively, this study supports the clinical development of VB-111 as a treatment for GBM.


Assuntos
Adenoviridae/genética , Indutores da Angiogênese/uso terapêutico , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Neovascularização Patológica/terapia , Adenoviridae/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Terapia Genética/métodos , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores do Fator de Necrose Tumoral , Estatísticas não Paramétricas , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor fas/genética
19.
Bioorg Med Chem Lett ; 25(20): 4544-8, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26341136

RESUMO

Glioblastoma, the most common form of malignant primary brain tumor, is characterized by resistance to apoptosis, which is largely responsible for the low effectiveness of the classical chemotherapeutic approaches based on apoptosis induction in cancer cells. Previously, a fungal secondary metabolite ophiobolin A was found to have significant activity against apoptosis-resistant glioblastoma cells through the induction of a non-apoptotic cell death, thus, offering an innovative strategy to combat this type of cancer. The current work describes the results of a preliminary evaluation of ophiobolin A in an in vivo glioblastoma model and its chemical derivatization to establish first synthetically generated structure-activity relationship. The synthetic work has also led to the discovery of a unique reaction of ophiobolin A with primary amines suggesting the possibility of pyrrolylation of lysine residues on its intracellular target protein(s).


Assuntos
Aminas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Sesterterpenos/química , Sesterterpenos/farmacologia , Animais , Antineoplásicos/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/patologia , Humanos , Camundongos , Estrutura Molecular , Sesterterpenos/metabolismo , Relação Estrutura-Atividade
20.
Oncogene ; 43(14): 1063-1074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374406

RESUMO

Flotillin-1 contributes to invasion and metastasis in triple negative breast cancer (TNBC) and is modified post-translationally through palmitoylation. Palmitoylation, the process of conjugating palmitoyl-CoA to proteins, plays an essential role in protein stability and trafficking. Thus far, there has not been any investigation into the role of flotillin-1 palmitoylation in the context of metastasis in vivo. To address the role of flotillin-1 palmitoylation in metastasis, MDA-MB-231 cells expressing palmitoylation defective flotillin-1 constructs were used as models. Compared to flotillin-1 WT expressing tumors, flotillin-1 palmitoylation defective displayed abrogated tumor progression and lung metastasis in vivo in both spontaneous and experimental models. Further mechanistic investigation led to the identification of zDHHC5 as the main palmitoyl acyltransferase responsible for palmitoylating endogenous flotillin-1. Modulation of flotillin-1 palmitoylation status through mutagenesis, zDHHC5 silencing, and 2-bromopalmitate inhibition all resulted in the proteasomal degradation of flotillin-1 protein. To assess if flotillin-1 palmitoylation can be inhibited for potential clinical relevance, we designed a competitive peptide fused to a cell penetrating peptide sequence, which displayed efficacy in blocking flotillin-1 palmitoylation in vitro without altering palmitoylation of other zDHHC5 substrates, highlighting its specificity. Additionally, TNBC xenograft tumor models expressing a doxycycline inducible flotillin-1 palmitoylation inhibiting peptide displayed attenuated tumor growth and lung metastasis. Collectively, these results reveal a novel palmitoylation dependent mechanism which is essential for the stability of flotillin-1 protein. More specifically, disruption of flotillin-1 palmitoylation through mutagenesis or competitive peptide promoted flotillin-1 protein degradation, subsequently impeding its tumor promoting and metastasis-inducing effects in TNBC tumor models.


Assuntos
Neoplasias Pulmonares , Proteínas de Membrana , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Lipoilação , Neoplasias Pulmonares/genética , Proteínas de Membrana/metabolismo , Peptídeos , Neoplasias de Mama Triplo Negativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA