Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 19(6): 637-643, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32157191

RESUMO

Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are 'half van der Waals' metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer.

2.
Nano Lett ; 20(11): 8312-8318, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33079555

RESUMO

Near-infrared-to-visible second harmonic generation from air-stable two-dimensional polar gallium and indium metals is described. The photonic properties of 2D metals, including the largest second-order susceptibilities reported for metals (approaching 10 nm/V), are determined by the atomic-level structure and bonding of two-to-three-atom-thick crystalline films. The bond character evolved from covalent to metallic over a few atomic layers, changing the out-of-plane metal-metal bond distances by approximately ten percent (0.2 Å), resulting in symmetry breaking and an axial electrostatic dipole that mediated the large nonlinear response. Two different orientations of the crystalline metal atoms, corresponding to lateral displacements <2 Å, persisted in separate micrometer-scale terraces to generate distinct harmonic polarizations. This strong atomic-level structure-property interplay suggests metal photonic properties can be controlled with atomic precision.

3.
Nanotechnology ; 29(47): 47LT02, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30207301

RESUMO

The experimental realization of two-dimensional (2D) gallium nitride (GaN) has enabled the exploration of 2D nitride materials beyond boron nitride. Here we demonstrate one possible pathway to realizing ultra-thin nitride layers through a two-step process involving the synthesis of naturally layered, group-III chalcogenides (GIIIC) and subsequent annealing in ammonia (ammonolysis) that leads to an atomic-exchange of the chalcogen and nitrogen species in the 2D-GIIICs. The effect of nitridation differs for gallium and indium selenide, where gallium selenide undergoes structural changes and eventual formation of ultra-thin GaN, while indium selenide layers are primarily etched rather than transformed by nitridation. Further investigation of the resulting GaN films indicates that ultra-thin GaN layers grown on silicon dioxide act as effective 'seed layers' for the growth of 3D GaN on amorphous substrates.

4.
Heart Lung Circ ; 22(3): 188-92, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23261324

RESUMO

BACKGROUND: Radial access for percutaneous coronary intervention (PCI) has been shown to reduce access site complications, improve patient comfort and reduce mortality. Use of a sheathless guiding catheter for transradial PCI has the potential reduce trauma to the radial artery and to further expand the type of cases where this approach can be utilised. We report our initial experience with the recently developed Sheathless Eaucath. METHODS: We retrospectively evaluated outcomes in consecutive patients who underwent PCI using the Sheathless Eaucath at our institution between February 2009 and November 2011. All procedures were performed via radial access. There were no exclusion criteria. RESULTS: The study included 120 patients. Of these 87 (72.5%) presented with acute coronary syndromes. Primary PCI was performed in nine and rescue PCI in seven patients. Interventions were performed on a total of 147 lesions. The majority of lesions were complex (68% classified as type B2 or C). Bifurcation lesions were treated in 42.5% and chronic total occlusions in 5% of patients. Adjunctive devices including rotablation, IVUS and 6 or 7 Fr thrombus aspiration catheters were used in 30% of patients. Angiographic success was achieved in 97.5%. Five patients suffered peri-procedural non-ST-elevation myocardial infarctions. There was no in-hospital target vessel revascularisation or death. Peri-procedural radial artery occlusion was infrequent (2.3%). Haematomas larger than 5cm occurred in two patients. No other vascular complications occurred. CONCLUSION: Use of the Sheathless Eaucath is safe and allows complex interventions to be undertaken transradially with a high success rate.


Assuntos
Cateteres Cardíacos , Intervenção Coronária Percutânea/instrumentação , Síndrome Coronariana Aguda/diagnóstico por imagem , Síndrome Coronariana Aguda/cirurgia , Idoso , Angiografia , Cateteres Cardíacos/efeitos adversos , Oclusão Coronária/diagnóstico por imagem , Oclusão Coronária/cirurgia , Feminino , Hematoma/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/etiologia , Intervenção Coronária Percutânea/efeitos adversos , Artéria Radial , Estudos Retrospectivos
5.
ACS Appl Mater Interfaces ; 13(46): 55428-55439, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34780159

RESUMO

Scalable synthesis of two-dimensional gallium (2D-Ga) covered by graphene layers was recently realized through confinement heteroepitaxy using silicon carbide substrates. However, the thickness, uniformity, and area coverage of the 2D-Ga heterostructures have not previously been studied with high-spatial resolution techniques. In this work, we resolve and measure the 2D-Ga heterostructure thicknesses using scanning electron microscopy (SEM). Utilizing multiple correlative methods, we find that SEM image contrast is directly related to the presence of uniform bilayer Ga at the interface and a variation of the number of graphene layers. We also investigate the origin of SEM contrast using both experimental measurements and theoretical calculations of the surface potentials. We find that a carbon buffer layer is detached due to the gallium intercalation, which increases the surface potential as an indication of the 2D-Ga presence. We then scale up the heterostructure characterization over a few-square millimeter area by segmenting SEM images, each acquired with nanometer-scale in-plane resolution. This work leverages the spectroscopic imaging capabilities of SEM that allows high-spatial resolution imaging for tracking intercalants, identifying relative surface potentials, determining the number of 2D layers, and further characterizing scalability and uniformity of low-dimensional materials.

6.
Nanoscale ; 11(33): 15440-15447, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31393495

RESUMO

Intercalation of atomic species through epitaxial graphene on silicon carbide began only a few years following its initial report in 2004. The impact of intercalation on the electronic properties of the graphene is well known; however, the intercalant itself can also exhibit intriguing properties not found in nature. This realization has inspired new interest in epitaxial graphene/silicon carbide (EG/SiC) intercalation, where the scope of the technique extends beyond modulation of graphene properties to the creation of new 2D forms of 3D materials. The mission of this minireview is to provide a concise introduction to EG/SiC intercalation and to demonstrate a simplified approach to EG/SiC intercalation. We summarize the primary techniques used to achieve and characterize EG/SiC intercalation, and show that thermal evaporation-based methods can effectively substitute for more complex synthesis techniques, enabling large-scale intercalation of non-refractory metals and compounds including two-dimensional silver (2D-Ag) and gallium nitride (2D-GaNx).

7.
ACS Appl Mater Interfaces ; 10(47): 40831-40837, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384598

RESUMO

The utilization of alkali salts, such as NaCl and KI, has enabled the successful growth of large single domain and fully coalesced polycrystalline two-dimensional (2D) transition-metal dichalcogenide layers. However, the impact of alkali salts on photonic and electronic properties is not fully established. In this work, we report alkali-free epitaxy of MoS2 on sapphire and benchmark the properties against alkali-assisted growth of MoS2. This study demonstrates that although NaCl can dramatically increase the domain size of monolayer MoS2 by 20 times, it can also induce strong optical and electronic heterogeneities in as-grown, large-scale films. This work elucidates that utilization of NaCl can lead to variation in growth rates, loss of epitaxy, and high density of nanoscale MoS2 particles (4 ± 0.7/µm2). Such phenomena suggest that alkali atoms play an important role in Mo and S adatom mobility and strongly influence the 2D/sapphire interface during growth. Compared to alkali-free synthesis under the same growth conditions, MoS2 growth assisted by NaCl results in >1% tensile strain in as-grown domains, which reduces photoluminescence by ∼20× and degrades transistor performance.

8.
Nanoscale ; 10(1): 336-341, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29215125

RESUMO

Two and three-dimensional (2D/3D) hybrid materials have the potential to advance communication and sensing technologies by enabling new or improved device functionality. To date, most 2D/3D hybrid devices utilize mechanical exfoliation or post-synthesis transfer, which can be fundamentally different from directly synthesized layers that are compatible with large scale industrial needs. Therefore, understanding the process/property relationship of synthetic heterostructures is priority for industrially relevant material architectures. Here we demonstrate the scalable synthesis of molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) via metal organic chemical vapor deposition (MOCVD) on gallium nitride (GaN), and elucidate the structure, chemistry, and vertical transport properties of the 2D/3D hybrid. We find that the 2D layer thickness and transition metal dichalcogenide (TMD) choice plays an important role in the transport properties of the hybrid structure, where monolayer TMDs exhibit direct tunneling through the layer, while transport in few layer TMDs on GaN is dominated by p-n diode behavior and varies with the 2D/3D hybrid structure. Kelvin probe force microscopy (KPFM), low energy electron microscopy (LEEM) and X-ray photoelectron spectroscopy (XPS) reveal a strong intrinsic dipole and charge transfer between n-MoS2 and p-GaN, leading to a degraded interface and high p-type leakage current. Finally, we demonstrate integration of heterogeneous 2D layer stacks of MoS2/WSe2 on GaN with atomically sharp interface. Monolayer MoS2/WSe2/n-GaN stacks lead to near Ohmic transport due to the tunneling and non-degenerated doping, while few layer stacking is Schottky barrier dominated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA