RESUMO
CD4+ T cells play key roles in a range of immune responses, either as direct effectors or through accessory cells, including CD8+ T lymphocytes. In cancer, neoantigen (NeoAg)-specific CD8+ T cells capable of direct tumor recognition have been extensively studied, whereas the role of NeoAg-specific CD4+ T cells is less well understood. We have characterized the murine CD4+ T cell response against a validated NeoAg (CLTCH129>Q) expressed by the MHC-II-deficient squamous cell carcinoma tumor model (SCC VII) at the level of single T cell receptor (TCR) clonotypes and in the setting of adoptive immunotherapy. We find that the natural CLTCH129>Q-specific repertoire is diverse and contains TCRs with distinct avidities as measured by tetramer-binding assays and CD4 dependence. Despite these differences, CD4+ T cells expressing high or moderate avidity TCRs undergo comparable in vivo proliferation to cross-presented antigen from growing tumors and drive similar levels of therapeutic immunity that is dependent on CD8+ T cells and CD40L signaling. Adoptive cellular therapy (ACT) with NeoAg-specific CD4+ T cells is most effective when TCR-engineered cells are differentiated ex vivo with IL-7 and IL-15 rather than IL-2 and this was associated with both increased expansion as well as the acquisition and stable maintenance of a T stem cell memory (TSCM)-like phenotype in tumor-draining lymph nodes (tdLNs). ACT with TSCM-like CD4+ T cells results in lower PD-1 expression by CD8+ T cells in the tumor microenvironment and an increased frequency of PD-1+CD8+ T cells in tdLNs. These findings illuminate the role of NeoAg-specific CD4+ T cells in mediating antitumor immunity via providing help to CD8+ T cells and highlight their therapeutic potential in ACT.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Imunoterapia Adotiva , Imunoterapia , Linfócitos T CD4-Positivos , Células-Tronco , Microambiente TumoralRESUMO
The clinical impact of tumor-specific neoantigens as both immunotherapeutic targets and biomarkers has been impeded by the lack of efficient methods for their identification and validation from routine samples. We have developed a platform that combines bioinformatic analysis of tumor exomes and transcriptional data with functional testing of autologous peripheral blood mononuclear cells (PBMCs) to simultaneously identify and validate neoantigens recognized by naturally primed CD4+ and CD8+ T cell responses across a range of tumor types and mutational burdens. The method features a human leukocyte antigen (HLA)-agnostic bioinformatic algorithm that prioritizes mutations recognized by patient PBMCs at a greater than 40% positive predictive value followed by a short-term in vitro functional assay, which allows interrogation of 50 to 75 expressed mutations from a single 50-ml blood sample. Neoantigens validated by this method include both driver and passenger mutations, and this method identified neoantigens that would not have been otherwise detected using an in silico prediction approach. These findings reveal an efficient approach to systematically validate clinically actionable neoantigens and the T cell receptors that recognize them and demonstrate that patients across a variety of human cancers have a diverse repertoire of neoantigen-specific T cells.
Assuntos
Antígenos de Neoplasias , Neoplasias , Humanos , Antígenos de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos do Interstício TumoralRESUMO
Vaccination can help prevent infection and can also be used to treat cancer, allergy, and potentially even drug overdose. Adjuvants enhance vaccine responses, but currently, the path to their advancement and development is incremental. We used a phenotypic small-molecule screen using THP-1 cells to identify nuclear factor-κB (NF-κB)-activating molecules followed by counterscreening lead target libraries with a quantitative tumor necrosis factor immunoassay using primary human peripheral blood mononuclear cells. Screening on primary cells identified an imidazopyrimidine, dubbed PVP-037. Moreover, while PVP-037 did not overtly activate THP-1 cells, it demonstrated broad innate immune activation, including NF-κB and cytokine induction from primary human leukocytes in vitro as well as enhancement of influenza and SARS-CoV-2 antigen-specific humoral responses in mice. Several de novo synthesis structural enhancements iteratively improved PVP-037's in vitro efficacy, potency, species-specific activity, and in vivo adjuvanticity. Overall, we identified imidazopyrimidine Toll-like receptor-7/8 adjuvants that act in synergy with oil-in-water emulsion to enhance immune responses.
Assuntos
Adjuvantes Imunológicos , Pirimidinas , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Humanos , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/metabolismo , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Receptor 7 Toll-Like/agonistas , Pirimidinas/farmacologia , Pirimidinas/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Imidazóis/farmacologia , Imidazóis/química , Células THP-1 , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , COVID-19/virologia , COVID-19/imunologia , NF-kappa B/metabolismo , Feminino , Descoberta de Drogas/métodos , Imunidade Inata/efeitos dos fármacosRESUMO
CD4+ T cells play a critical role in antitumor immunity via recognition of peptide antigens presented on MHC class II (MHC-II). Although some solid cancers can be induced to express MHC-II, the extent to which this enables direct recognition by tumor-specific CD4+ T cells is unclear. We isolated and characterized T cell antigen receptors (TCRs) from naturally primed CD4+ T cells specific for 2 oncoproteins, HPV-16 E6 and the activating KRASG12V mutation, from patients with head and neck squamous cell carcinoma and pancreatic ductal adenocarcinoma, respectively, and determined their ability to recognize autologous or human leukocyte antigen-matched antigen-expressing tumor cells. We found in both cases that the TCRs were capable of recognizing peptide-loaded target cells expressing the relevant MHC-II or B cell antigen-presenting cells (APCs) when the antigens were endogenously expressed and directed to the endosomal pathway but failed to recognize tumor cells expressing the source protein even after induction of surface MHC-II expression by IFN-γ or transduction with CIITA. These results suggest that priming and functional recognition of both a nuclear (E6) and a membrane-associated (KRAS) oncoprotein are predominantly confined to crosspresenting APCs rather than via direct recognition of tumor cells induced to express MHC-II.
Assuntos
Linfócitos T CD4-Positivos , Neoplasias Pancreáticas , Humanos , Epitopos , Oncogenes , Antígenos HLA , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias Pancreáticas/genética , Peptídeos/metabolismoRESUMO
Therapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response to ICB of an aggressive low-TMB squamous cell tumor could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4+ and CD8+ T cells. We found that, whereas vaccination with CD4+ or CD8+ NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1+ tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked. Therapeutic CD4+/CD8+ T cell NeoAg vaccination produced a modified tumor microenvironment (TME) with increased numbers of NeoAg-specific CD8+ T cells existing in progenitor and intermediate exhausted states enabled by combination ICB-mediated intermolecular epitope spreading. We believe that the concepts explored herein should be exploited for the development of more potent personalized cancer vaccines that can expand the range of tumors treatable with ICB.
Assuntos
Inibidores de Checkpoint Imunológico , Vacinação , Epitopos , Linfócitos T CD4-Positivos , Linfócitos T CD8-PositivosRESUMO
Therapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response of an aggressive low TMB squamous cell tumor to ICB could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4 + and CD8 + T cells. We found that, whereas vaccination with CD4 + or CD8 + NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1 + tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked. Therapeutic CD4 + /CD8 + T cell NeoAg vaccination produced a modified tumor microenvironment (TME) with increased numbers of NeoAg-specific CD8 + T cells existing in progenitor and intermediate exhausted states enabled by combination ICB-mediated intermolecular epitope spreading. The concepts explored herein should be exploited for the development of more potent personalized cancer vaccines that can expand the range of tumors treatable with ICB.
RESUMO
Infection is the most common cause of mortality early in life, yet the broad potential of immunization is not fully realized in this vulnerable population. Most vaccines are administered during infancy and childhood, but in some cases the full benefit of vaccination is not realized in-part. New adjuvants are cardinal to further optimize current immunization approaches for early life. However, only a few classes of adjuvants are presently incorporated in vaccines approved for human use. Recent advances in the discovery and delivery of Toll-like receptor (TLR) agonist adjuvants have provided a new toolbox for vaccinologists. Prominent among these candidate adjuvants are synthetic small molecule TLR7/8 agonists. The development of an effective infant Bordetella pertussis vaccine is urgently required because of the resurgence of pertussis in many countries, contemporaneous to the switch from whole cell to acellular vaccines. In this context, TLR7/8 adjuvant based vaccine formulation strategies may be a promising tool to enhance and accelerate early life immunity by acellular B. pertussis vaccines. In the present study, we optimized (a) the formulation delivery system, (b) structure, and (c) immunologic activity of novel small molecule imidazoquinoline TLR7/8 adjuvants towards human infant leukocytes, including dendritic cells. Upon immunization of neonatal mice, this TLR7/8 adjuvant overcame neonatal hyporesponsiveness to acellular pertussis vaccination by driving a T helper (Th)1/Th17 biased T cell- and IgG2c-skewed humoral response to a licensed acellular vaccine (DTaP). This potent immunization strategy may represent a new paradigm for effective immunization against pertussis and other pathogens in early life.
Assuntos
Coqueluche , Animais , Criança , Humanos , Lactente , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Vacina contra Coqueluche , Receptor 7 Toll-Like/agonistas , Vacinação , Vacinas Acelulares , Coqueluche/epidemiologiaRESUMO
The goal of precision immunotherapy is to direct a patient's T cell response against the immunogenic mutations expressed on their tumors. Most immunotherapy approaches to-date have focused on MHC class I-restricted peptide epitopes by which cytotoxic CD8+ T lymphocytes (CTL) can directly recognize tumor cells. This strategy largely overlooks the critical role of MHC class II-restricted CD4+ T cells as both positive regulators of CTL and other effector cell types, and as direct effectors of antitumor immunity. In this review, we will discuss the role of neoantigen specific CD4+ T cells in cancer immunotherapy and how existing treatment modalities may be leveraged to engage this important T cell subset.
Assuntos
Antígenos de Neoplasias/metabolismo , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/imunologia , Humanos , Linfócitos T Auxiliares-Indutores/imunologiaRESUMO
Current acellular-pertussis (aP) vaccines appear inadequate for long-term pertussis control because of short-lived efficacy and the increasing prevalence of pertactin-negative isolates which may negatively impact vaccine efficacy. In this study, we added fimbriae (FIM)2 and FIM3 protein to licensed 2-, 3- or 5-component aP vaccines (Pentavac®, Boostrix®, Adacel®, respectively) to assess whether an aP vaccine with enhanced FIM content demonstrates enhanced efficacy. Vaccine-induced protection was assessed in an intranasal mouse challenge model. In addition, potential reactogenicity was measured by biomarkers in a human whole blood assay (WBA) in vitro and benchmarked the responses against licensed whole cell pertussis (wP) and aP vaccines including Easyfive®, Pentavac® and Pentacel®. The results show that commercial vaccines demonstrated reduced efficacy against pertactin-negative versus pertactin-positive strains. However, addition of higher amounts of FIM2/3 to aP vaccines reduced lung colonization and increased vaccine efficacy against a pertactin-negative strain in a dose-dependent manner. Improvements in efficacy were similar for FIM2 and FIM3-expressing strains. Increasing the amount of FIM2/3 proteins in aP formulations did not alter vaccine-induced biomarkers of potential reactogenicity including prostaglandin E2, cytokines and chemokines in human newborn cord and adult peripheral blood tested in vitro. These results suggest that increasing the quantity of FIM proteins in current pertussis vaccine formulations may further enhance vaccine efficacy against B. pertussis infection without increasing the reactogenicity of the vaccine.