RESUMO
Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP â LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP â anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP â aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.
Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação do Apetite , Glucose/metabolismo , Resistência à Insulina , Neurônios/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Comportamento Alimentar , Camundongos , Miostatina/genética , Optogenética , TranscriptomaRESUMO
BACKGROUND: The complement factor 5 (C5)-inhibitor eculizumab has been established as standard-of-care for the treatment of atypical hemolytic uremic syndrome (aHUS). In 2021, the long-acting C5-inhibitor ravulizumab was approved, extending intervals of intravenous treatment from two to eight weeks resulting in improvement of quality of life for patients and lowering direct and indirect therapy associated costs. METHODS: This multicenter, retrospective data analysis of 32 adult patients with aHUS (including 10 kidney transplant recipients) treated with eculizumab for at least three months and switched to ravulizumab aims to evaluate the safety and efficacy of switching medication in the real-world setting. Hematologic parameters, kidney function, concurrent therapy and aHUS associated events were evaluated three months before and until up to 12 months after switching to ravulizumab. RESULTS: Mean age (range) at ravulizumab initiation was 41 years (19-78 years) and 59% of the patients were female. Genetic analysis was available for all patients with 72% showing a pathogenic variant. Median time (range) on eculizumab before switching was 20 months (3-120 months). No new events of TMA or worsening of renal function were reported during up to 12 months of follow-up during ravulizumab treatment. CONCLUSIONS: This is the largest, non-industry derived, multi-center retrospective analysis of adult patients with aHUS switching C5-inhibitor treatment from eculizumab to ravulizumab in the real-world setting. Switching to ravulizumab was safe and efficient resulting in sustained hematological stability and preservation of renal function.
Assuntos
Anticorpos Monoclonais Humanizados , Síndrome Hemolítico-Urêmica Atípica , Substituição de Medicamentos , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Feminino , Adulto , Masculino , Síndrome Hemolítico-Urêmica Atípica/tratamento farmacológico , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Adulto Jovem , Inativadores do Complemento/uso terapêutico , Resultado do TratamentoRESUMO
BACKGROUND: Diseases of the kidney's glomerular filtration barrier are a leading cause of end stage renal failure. Despite a growing understanding of genes involved in glomerular disorders in children, the vast majority of adult patients lack a clear genetic diagnosis. The protein podocin p.R229Q, which results from the most common missense variant in NPHS2, is enriched in cohorts of patients with FSGS. However, p.R229Q has been proposed to cause disease only when transassociated with specific additional genetic alterations, and population-based epidemiologic studies on its association with albuminuria yielded ambiguous results. METHODS: To test whether podocin p.R229Q may also predispose to the complex disease pathogenesis in adults, we introduced the exact genetic alteration in mice using CRISPR/Cas9-based genome editing (PodR231Q ). We assessed the phenotype using super-resolution microscopy and albuminuria measurements and evaluated the stability of the mutant protein in cell culture experiments. RESULTS: Heterozygous PodR231Q/wild-type mice did not present any overt kidney disease or proteinuria. However, homozygous PodR231Q/R231Q mice developed increased levels of albuminuria with age, and super-resolution microscopy revealed preceding ultrastructural morphologic alterations that were recently linked to disease predisposition. When injected with nephrotoxic serum to induce glomerular injury, heterozygous PodR231Q/wild-type mice showed a more severe course of disease compared with Podwild-type/wild-type mice. Podocin protein levels were decreased in PodR231Q/wild-type and PodR231Q/R231Q mice as well as in human cultured podocytes expressing the podocinR231Q variant. Our in vitro experiments indicate an underlying increased proteasomal degradation. CONCLUSIONS: Our findings demonstrate that podocin R231Q exerts a pathogenic effect on its own, supporting the concept of podocin R229Q contributing to genetic predisposition in adult patients.
Assuntos
Albuminúria/genética , Predisposição Genética para Doença/genética , Barreira de Filtração Glomerular/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Nefropatias/genética , Proteínas de Membrana/genética , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Podócitos/patologiaRESUMO
In recent years, many light-microscopy protocols have been published for visualization of nanoscale structures in the kidney. These protocols present researchers with new tools to evaluate both foot process anatomy and effacement, as well as protein distributions in foot processes, the slit diaphragm and in the glomerular basement membrane. However, these protocols either involve the application of different complicated super resolution microscopes or lengthy sample preparation protocols. Here, we present a fast and simple, five-hour long procedure for three-dimensional visualization of kidney morphology on all length scales. The protocol combines optical clearing and tissue expansion concepts to produce a mild swelling, sufficient for resolving nanoscale structures using a conventional confocal microscope. We show that the protocol can be applied to visualize a wide variety of pathologic features in both mouse and human kidneys. Thus, our fast and simple protocol can be beneficial for conventional microscopic evaluation of kidney tissue integrity both in research and possibly in future clinical routines.
Assuntos
Glomérulos Renais , Rim , Animais , Rim/diagnóstico por imagem , Camundongos , MicroscopiaRESUMO
Idiopathic nephrotic syndrome is the most frequent glomerular disease in children in most parts of the world. Children with steroid-sensitive nephrotic syndrome (SSNS) generally have a good prognosis regarding the maintenance of normal kidney function even in the case of frequent relapses. The course of SSNS is often complicated by a high rate of relapses and the associated side effects of repeated glucocorticoid (steroid) therapy. The following recommendations for the treatment of SSNS are based on the comprehensive consideration of published evidence by a working group of the German Society for Pediatric Nephrology (GPN) based on the systematic Cochrane reviews on SSNS and the guidelines of the KDIGO working group (Kidney Disease - Improving Global Outcomes).
Assuntos
Nefrose Lipoide , Síndrome Nefrótica , Criança , Glucocorticoides/uso terapêutico , Humanos , Nefrose Lipoide/tratamento farmacológico , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/fisiopatologia , Recidiva , Esteroides/uso terapêuticoRESUMO
[This corrects the article DOI: 10.1016/j.ekir.2024.01.035.].
RESUMO
Introduction: In pregnancy-related atypical hemolytic uremic syndrome (p-aHUS), transferring recommendations for treatment decisions from nonpregnant cohorts with thrombotic microangiopathy (TMA) is difficult. Although potential causes of p-aHUS may be unrelated to inherent complement defects, peripartal complications such as postpartum hemorrhage (PPH) or (pre)eclampsia or Hemolysis, Elevated Liver enzymes and Low Platelets (HELLP) syndrome may be unrecognized drivers of complement activation. Methods: To evaluate diagnostic and therapeutic decisions in the practical real-life setting, we conducted an analysis of a cohort of 40 patients from 3 German academic hospitals with a diagnosis of p-aHUS, stratified by the presence (n = 25) or absence (n = 15) of PPH. Results: Histological signs of TMA were observed in 84.2% of all patients (100% vs. 72.7% in patients without or with PPH, respectively). Patients without PPH had a higher likelihood (20% vs. 0%) of pathogenic genetic abnormalities in the complement system although notably less than in other published cohorts. Four of 5 patients with observed renal cortical necrosis (RCN) after PPH received complement inhibition and experienced partially recovered kidney function. Patients on complement inhibition with or without PPH had an increased need for kidney replacement therapy (KRT) and plasma exchange (PEX). Because renal recovery was comparable among all patients treated with complement inhibition, a potential beneficial effect in this group of pregnancy-associated TMAs and p-aHUS is presumed. Conclusion: Based on our findings, we suggest a pragmatic approach toward limited and short-term anticomplement therapy for patients with a clinical diagnosis of p-aHUS, which should be stopped once causes of TMA other than genetic complement abnormalities emerge.
RESUMO
Introduction: Genetic disorders are among the most prevalent causes leading to progressive glomerular disease and, ultimately, end-stage renal disease (ESRD) in children and adolescents. Identification of underlying genetic causes is indispensable for targeted treatment strategies and counseling of affected patients and their families. Methods: Here, we report on a boy who presented at 4 years of age with proteinuria and biopsy-proven focal segmental glomerulosclerosis (FSGS) that was temporarily responsive to treatment with ciclosporin A. Molecular genetic testing identified a novel mutation in alpha-actinin-4 (p.M240T). We describe a feasible and efficient experimental approach to test its pathogenicity by combining in silico, in vitro, and in vivo analyses. Results: The de novo p.M240T mutation led to decreased alpha-actinin-4 stability as well as protein mislocalization and actin cytoskeleton rearrangements. Transgenic expression of wild-type human alpha-actinin-4 in Drosophila melanogaster nephrocytes was able to ameliorate phenotypes associated with the knockdown of endogenous actinin. In contrast, p.M240T, as well as other established disease variants p.W59R and p.K255E, failed to rescue these phenotypes, underlining the pathogenicity of the novel alpha-actinin-4 variant. Conclusion: Our data highlight that the newly identified alpha-actinin-4 mutation indeed encodes for a disease-causing variant of the protein and promote the Drosophila model as a simple and convenient tool to study monogenic kidney disease in vivo.