Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(8): 1817-1821, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167754

RESUMO

The magnitude, rate, and extent of past and future East Asian monsoon (EAM) rainfall fluctuations remain unresolved. Here, late Pleistocene-Holocene EAM rainfall intensity is reconstructed using a well-dated northeastern China closed-basin lake area record located at the modern northwestern fringe of the EAM. The EAM intensity and northern extent alternated rapidly between wet and dry periods on time scales of centuries. Lake levels were 60 m higher than present during the early and middle Holocene, requiring a twofold increase in annual rainfall, which, based on modern rainfall distribution, requires a ∼400 km northward expansion/migration of the EAM. The lake record is highly correlated with both northern and southern Chinese cave deposit isotope records, supporting rainfall "intensity based" interpretations of these deposits as opposed to an alternative "water vapor sourcing" interpretation. These results indicate that EAM intensity and the northward extent covary on orbital and millennial timescales. The termination of wet conditions at 5.5 ka BP (∼35 m lake drop) triggered a large cultural collapse of Early Neolithic cultures in north China, and possibly promoted the emergence of complex societies of the Late Neolithic.

3.
Proc Natl Acad Sci U S A ; 110(42): 16710-5, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24077260

RESUMO

Major changes in global rainfall patterns accompanied a northward shift of Earth's thermal equator at the onset of an abrupt climate change 14.6 kya. This northward pull of Earth's wind and rain belts stemmed from disintegration of North Atlantic winter sea ice cover, which steepened the interhemispheric meridional temperature gradient. A southward migration of Earth's thermal equator may have accompanied the more recent Medieval Warm to Little Ice Age climate transition in the Northern Hemisphere. As fossil fuel CO2 warms the planet, the continents of the Northern Hemisphere are expected to warm faster than the Southern Hemisphere oceans. Therefore, we predict that a northward shift of Earth's thermal equator, initiated by an increased interhemispheric temperature contrast, may well produce hydrologic changes similar to those that occurred during past Northern Hemisphere warm periods. If so, the American West, the Middle East, and southern Amazonia will become drier, and monsoonal Asia, Venezuela, and equatorial Africa will become wetter. Additional paleoclimate data should be acquired and model simulations should be conducted to evaluate the reliability of this analog.


Assuntos
Dióxido de Carbono , Mudança Climática , Combustíveis Fósseis , Modelos Teóricos , Oceanos e Mares
4.
Nature ; 457(7233): 1097-102, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19242468

RESUMO

The asynchronous relationship between millennial-scale temperature changes over Greenland and Antarctica during the last glacial period has led to the notion of a bipolar seesaw which acts to redistribute heat depending on the state of meridional overturning circulation within the Atlantic Ocean. Here we present new records from the South Atlantic that show rapid changes during the last deglaciation that were instantaneous (within dating uncertainty) and of opposite sign to those observed in the North Atlantic. Our results demonstrate a direct link between the abrupt changes associated with variations in the Atlantic meridional overturning circulation and the more gradual adjustments characteristic of the Southern Ocean. These results emphasize the importance of the Southern Ocean for the development and transmission of millennial-scale climate variability and highlight its role in deglacial climate change and the associated rise in atmospheric carbon dioxide.


Assuntos
Camada de Gelo , Temperatura , Movimentos da Água , Regiões Antárticas , Oceano Atlântico , Atmosfera/química , Dióxido de Carbono/análise , Efeito Estufa , Groenlândia , História Antiga , Plâncton/metabolismo , Água do Mar/análise
6.
Sci Adv ; 3(5): e1600871, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28580418

RESUMO

A likely consequence of global warming will be the redistribution of Earth's rain belts, affecting water availability for many of Earth's inhabitants. We consider three ways in which planetary warming might influence the global distribution of precipitation. The first possibility is that rainfall in the tropics will increase and that the subtropics and mid-latitudes will become more arid. A second possibility is that Earth's thermal equator, around which the planet's rain belts and dry zones are organized, will migrate northward. This northward shift will be a consequence of the Northern Hemisphere, with its large continental area, warming faster than the Southern Hemisphere, with its large oceanic area. A third possibility is that both of these scenarios will play out simultaneously. We review paleoclimate evidence suggesting that (i) the middle latitudes were wetter during the last glacial maximum, (ii) a northward shift of the thermal equator attended the abrupt Bølling-Allerød climatic transition ~14.6 thousand years ago, and (iii) a southward shift occurred during the more recent Little Ice Age. We also inspect trends in seasonal surface heating between the hemispheres over the past several decades. From these clues, we predict that there will be a seasonally dependent response in rainfall patterns to global warming. During boreal summer, in which the rate of recent warming has been relatively uniform between the hemispheres, wet areas will get wetter and dry regions will become drier. During boreal winter, rain belts and drylands will expand northward in response to differential heating between the hemispheres.


Assuntos
Aquecimento Global , Modelos Teóricos , Chuva , Clima Tropical , Humanos
7.
Science ; 352(6291): 1312-4, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27284192

RESUMO

Carbon capture and storage (CCS) provides a solution toward decarbonization of the global economy. The success of this solution depends on the ability to safely and permanently store CO2 This study demonstrates for the first time the permanent disposal of CO2 as environmentally benign carbonate minerals in basaltic rocks. We find that over 95% of the CO2 injected into the CarbFix site in Iceland was mineralized to carbonate minerals in less than 2 years. This result contrasts with the common view that the immobilization of CO2 as carbonate minerals within geologic reservoirs takes several hundreds to thousands of years. Our results, therefore, demonstrate that the safe long-term storage of anthropogenic CO2 emissions through mineralization can be far faster than previously postulated.

8.
Science ; 331(6014): 202-5, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21233385

RESUMO

Deepwater formation in the North Atlantic by open-ocean convection is an essential component of the overturning circulation of the Atlantic Ocean, which helps regulate global climate. We use water-column radiocarbon reconstructions to examine changes in northeast Atlantic convection since the Last Glacial Maximum. During cold intervals, we infer a reduction in open-ocean convection and an associated incursion of an extremely radiocarbon ((14)C)-depleted water mass, interpreted to be Antarctic Intermediate Water. Comparing the timing of deep convection changes in the northeast and northwest Atlantic, we suggest that, despite a strong control on Greenland temperature by northeast Atlantic convection, reduced open-ocean convection in both the northwest and northeast Atlantic is necessary to account for contemporaneous perturbations in atmospheric circulation.

9.
Science ; 326(5950): 248-52, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19815769

RESUMO

230Th-dated oxygen isotope records of stalagmites from Sanbao Cave, China, characterize Asian Monsoon (AM) precipitation through the ends of the third- and fourthmost recent ice ages. As a result, AM records for the past four glacial terminations can now be precisely correlated with those from ice cores and marine sediments, establishing the timing and sequence of major events. In all four cases, observations are consistent with a classic Northern Hemisphere summer insolation intensity trigger for an initial retreat of northern ice sheets. Meltwater and icebergs entering the North Atlantic alter oceanic and atmospheric circulation and associated fluxes of heat and carbon, causing increases in atmospheric CO2 and Antarctic temperatures that drive the termination in the Southern Hemisphere. Increasing CO2 and summer insolation drive recession of northern ice sheets, with probable positive feedbacks between sea level and CO2.

10.
Science ; 306(5699): 1169-72, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15539598

RESUMO

Measurements of the age difference between coexisting benthic and planktic foraminifera from western equatorial Pacific deep-sea cores suggest that during peak glacial time the radiocarbon age of water at 2-kilometers depth was no greater than that of today. These results make unlikely suggestions that a slowdown in deep-ocean ventilation was responsible for a sizable fraction of the increase of the ratio of carbon-14 (14C) to carbon in the atmosphere and surface ocean during glacial time. Comparison of 14C ages for coexisting wood and planktic foraminifera from the same site suggests that the atmosphere to surface ocean 14C to C ratio difference was not substantially different from today's.

11.
Science ; 315(5817): 1371, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17347428
12.
Science ; 312(5777): 1146-8, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16728622
13.
Science ; 304(5669): 388, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-15087526
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA