Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(13): 3502-3518.e33, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34048700

RESUMO

Thermogenic adipocytes possess a therapeutically appealing, energy-expending capacity, which is canonically cold-induced by ligand-dependent activation of ß-adrenergic G protein-coupled receptors (GPCRs). Here, we uncover an alternate paradigm of GPCR-mediated adipose thermogenesis through the constitutively active receptor, GPR3. We show that the N terminus of GPR3 confers intrinsic signaling activity, resulting in continuous Gs-coupling and cAMP production without an exogenous ligand. Thus, transcriptional induction of Gpr3 represents the regulatory parallel to ligand-binding of conventional GPCRs. Consequently, increasing Gpr3 expression in thermogenic adipocytes is alone sufficient to drive energy expenditure and counteract metabolic disease in mice. Gpr3 transcription is cold-stimulated by a lipolytic signal, and dietary fat potentiates GPR3-dependent thermogenesis to amplify the response to caloric excess. Moreover, we find GPR3 to be an essential, adrenergic-independent regulator of human brown adipocytes. Taken together, our findings reveal a noncanonical mechanism of GPCR control and thermogenic activation through the lipolysis-induced expression of constitutively active GPR3.


Assuntos
Tecido Adiposo Marrom/metabolismo , Receptor Constitutivo de Androstano/metabolismo , Lipólise , Receptores Acoplados a Proteínas G/metabolismo , Termogênese , Adipócitos/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Temperatura Baixa , Gorduras na Dieta/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Sistema Nervoso Simpático/metabolismo , Transcrição Gênica
2.
Appl Environ Microbiol ; 88(19): e0108722, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36165644

RESUMO

Synbiotics combine probiotics and prebiotics and are being investigated for potential health benefits. In this single-group-design trial, we analyzed changes in the gut microbiome, stool quality, and gastrointestinal well-being in 15 healthy volunteers after a synbiotic intervention comprising Lacticaseibacillus rhamnosus (LGG), Lactobacillus acidophilus (LA-5), Lacticaseibacillus paracasei subsp. paracasei (L. CASEI 431), and Bifidobacterium animalis subsp. lactis BB-12 and 20 g of chicory-derived inulin powder consumed daily for 4 weeks. Fecal samples were collected at baseline and at completion of the intervention, and all participants completed a fecal diary based on the Bristol Stool Scale and recorded their gastrointestinal well-being. No adverse effects were observed after consumption of the synbiotic product, and stool consistency and frequency remained almost unchanged during the trial. Microbiome analysis of the fecal samples was achieved using shotgun sequencing followed by taxonomic profiling. No changes in alpha and beta diversity were seen after the intervention. Greater relative abundances of Bifidobacteriaceae were observed in 12 subjects, with indigenous bifidobacteria species constituting the main increase. All four probiotic organisms increased in abundance, and L. rhamnosus, B. animalis, and L. acidophilus were differentially abundant, compared to baseline. Comparison of the fecal strains to the B. animalis subsp. lactis BB-12 reference genome and the sequenced symbiotic product revealed only a few single-nucleotide polymorphisms differentiating the probiotic B. animalis subsp. lactis BB-12 from the fecal strains identified, indicating that this probiotic strain was detectable after the intervention. IMPORTANCE The effects of probiotics/synbiotics are seldom investigated in healthy volunteers; therefore, this study is important, especially considering the safety aspects of multiple probiotics together with prebiotic fiber in consumption by humans. The study explores at the potential of a synbiotic intervention with lactobacilli, bifidobacteria, and inulin in healthy volunteers and tracks the ingested probiotic strain B. animalis subsp. lactis.


Assuntos
Bifidobacterium animalis , Probióticos , Simbióticos , Humanos , Bifidobacterium , Fezes/microbiologia , Voluntários Saudáveis , Inulina , Lactobacillus , Lactobacillus acidophilus , Prebióticos , Probióticos/farmacologia
3.
Hum Mol Genet ; 27(10): 1763-1771, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29528396

RESUMO

Offspring of women with diabetes in pregnancy exhibit skeletal muscle insulin resistance and are at increased risk of developing type 2 diabetes, potentially mediated by epigenetic mechanisms or changes in the expression of small non-coding microRNAs. Members of the miR-15 family can alter the expression or function of important proteins in the insulin signalling pathway, affecting insulin sensitivity and secretion. We hypothesized that exposure to maternal diabetes may cause altered expression of these microRNAs in offspring skeletal muscle, representing a potential underlying mechanism by which exposure to maternal diabetes leads to increased risk of cardiometabolic disease in offspring. We measured microRNA expression in skeletal muscle biopsies of 26- to 35-year-old offspring of women with either gestational diabetes (O-GDM, n = 82) or type 1 diabetes (O-T1DM, n = 67) in pregnancy, compared with a control group of offspring from the background population (O-BP, n = 57) from an observational follow-up study. Expression of both miR-15a and miR-15b was increased in skeletal muscle obtained from O-GDM (both P < 0.001) and O-T1DM (P = 0.024, P = 0.005, respectively) compared with O-BP. Maternal 2 h post OGTT glucose levels were positively associated with miR-15a expression (P = 0.041) in O-GDM after adjustment for confounders and mediators. In all groups collectively, miRNA expression was significantly positively associated with fasting plasma glucose, 2 h plasma glucose and HbA1c. We conclude that fetal exposure to maternal diabetes is associated with increased skeletal muscle expression of miR-15a and miR-15b and that this may contribute to development of metabolic disease in these subjects.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Gestacional/genética , Epigênese Genética , MicroRNAs/genética , Adulto , Filhos Adultos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Diabetes Gestacional/sangue , Diabetes Gestacional/patologia , Feminino , Regulação da Expressão Gênica , Hemoglobinas Glicadas/genética , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Músculo Esquelético/patologia , Gravidez
4.
Endocr Res ; 45(1): 58-71, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31566019

RESUMO

Background: Being born with low birth weight (LBW) is a risk factor for muscle insulin resistance and type 2 diabetes (T2D), which may be mediated by epigenetic mechanisms programmed by the intrauterine environment. Epigenetic mechanisms exert their prime effects in developing cells. We hypothesized that muscle insulin resistance in LBW subjects may be due to early differential epigenomic and transcriptomic alterations in their immature muscle progenitor cells.Results: Muscle progenitor cells were obtained from 23 healthy young adult men born at term with LBW, and 15 BMI-matched normal birth weight (NBW) controls. The cells were subsequently cultured and differentiated into myotubes. DNA and RNA were harvested before and after differentiation for genome-wide DNA methylation and RNA expression measurements.After correcting for multiple comparisons (q ≤ 0.05), 56 CpG sites were found to be significantly, differentially methylated in myoblasts from LBW compared with NBW men, of which the top five gene-annotated CpG sites (SKI, ARMCX3, NR5A2, NEUROG, ESRRG) previously have been associated to regulation of cholesterol, fatty acid and glucose metabolism and muscle development or hypertrophy. LBW men displayed markedly decreased myotube gene expression levels of the AMPK-repressing tyrosine kinase gene FYN and the histone deacetylase gene HDAC7. Silencing of FYN and HDAC7 was associated with impaired myotube formation, which for HDAC7 reduced muscle glucose uptake.Conclusions: The data provides evidence of impaired muscle development predisposing LBW individuals to T2D is linked to and potentially caused by distinct DNA methylation and transcriptional changes including down regulation of HDAC7 and FYN in their immature myoblast stem cells.


Assuntos
Regulação para Baixo/genética , Epigenoma/genética , Recém-Nascido de Baixo Peso , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Transcriptoma/genética , Adulto , Humanos , Masculino , Adulto Jovem
5.
BMC Med ; 15(1): 39, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28222718

RESUMO

BACKGROUND: Human skeletal muscle stem cells are important for muscle regeneration. However, the combined genome-wide DNA methylation and expression changes taking place during adult myogenesis have not been described in detail and novel myogenic factors may be discovered. Additionally, obesity is associated with low relative muscle mass and diminished metabolism. Epigenetic alterations taking place during myogenesis might contribute to these defects. METHODS: We used Infinium HumanMethylation450 BeadChip Kit (Illumina) and HumanHT-12 Expression BeadChip (Illumina) to analyze genome-wide DNA methylation and transcription before versus after differentiation of primary human myoblasts from 14 non-obese and 14 obese individuals. Functional follow-up experiments were performed using siRNA mediated gene silencing in primary human myoblasts and a transgenic mouse model. RESULTS: We observed genome-wide changes in DNA methylation and expression patterns during differentiation of primary human muscle stem cells (myoblasts). We identified epigenetic and transcriptional changes of myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6, PAX7, MEF2A, MEF2C, and MEF2D), cell cycle regulators, metabolic enzymes and genes previously not linked to myogenesis, including IL32, metallothioneins, and pregnancy-specific beta-1-glycoproteins. Functional studies demonstrated IL-32 as a novel target that regulates human myogenesis, insulin sensitivity and ATP levels in muscle cells. Furthermore, IL32 transgenic mice had reduced insulin response and muscle weight. Remarkably, approximately 3.7 times more methylation changes (147,161 versus 39,572) were observed during differentiation of myoblasts from obese versus non-obese subjects. In accordance, DNMT1 expression increased during myogenesis only in obese subjects. Interestingly, numerous genes implicated in metabolic diseases and epigenetic regulation showed differential methylation and expression during differentiation only in obese subjects. CONCLUSIONS: Our study identifies IL-32 as a novel myogenic regulator, provides a comprehensive map of the dynamic epigenome during differentiation of human muscle stem cells and reveals abnormal epigenetic changes in obesity.


Assuntos
Músculo Esquelético/fisiologia , Obesidade/genética , Obesidade/patologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular/genética , Metilação de DNA , Epigênese Genética , Humanos , Camundongos , Pessoa de Meia-Idade , Desenvolvimento Muscular , Músculo Esquelético/patologia , Células-Tronco/patologia
6.
Diabetologia ; 59(12): 2664-2673, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27627980

RESUMO

AIMS/HYPOTHESIS: Low birthweight (LBW) is associated with dysfunctions of adipose tissue and metabolic disease in adult life. We hypothesised that altered epigenetic and transcriptional regulation of adipose-derived stem cells (ADSCs) could play a role in programming adipose tissue dysfunction in LBW individuals. METHODS: ADSCs were isolated from the subcutaneous adipose tissue of 13 normal birthweight (NBW) and 13 LBW adult men. The adipocytes were cultured in vitro, and genome-wide differences in RNA expression and DNA methylation profiles were analysed in ADSCs and differentiated adipocytes. RESULTS: We demonstrated that ADSCs from LBW individuals exhibit multiple expression changes as well as genome-wide alterations in methylation pattern. Reduced expression of the transcription factor cyclin T2 encoded by CCNT2 may play a key role in orchestrating several of the gene expression changes in ADSCs from LBW individuals. Indeed, silencing of CCNT2 in human adipocytes decreased leptin secretion as well as the mRNA expression of several genes involved in adipogenesis, including MGLL, LIPE, PPARG, LEP and ADIPOQ. Only subtle genome-wide mRNA expression and DNA methylation changes were seen in mature cultured adipocytes from LBW individuals. CONCLUSIONS/INTERPRETATION: Epigenetic and transcriptional changes in LBW individuals are most pronounced in immature ADSCs that in turn may programme physiological characteristics of the mature adipocytes that influence the risk of metabolic diseases. Reduced expression of CCNT2 may play a key role in the developmental programming of adipose tissue.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Adipogenia/genética , Adiponectina/genética , Adulto , Peso ao Nascer/genética , Peso ao Nascer/fisiologia , Células Cultivadas , Ciclina T/genética , Humanos , Masculino , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT2/genética , Adulto Jovem
7.
Acta Obstet Gynecol Scand ; 93(11): 1099-108, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25179736

RESUMO

Low birthweight (LBW) individuals and offspring of women with gestational diabetes mellitus (GDM) exhibit increased risk of developing type 2 diabetes (T2D) and associated cardiometabolic traits in adulthood, which for both groups may be mediated by adverse events and developmental changes in fetal life. T2D is a multifactorial disease occurring as a result of complicated interplay between genetic and both prenatal and postnatal nongenetic factors, and it remains unknown to what extent the increased risk of T2D associated with LBW or GDM in the mother may be due to, or confounded by, genetic factors. Indeed, it has been shown that genetic changes influencing risk of diabetes may also be associated with reduced fetal growth as a result of reduced insulin secretion and/or action. Similarly, increased risk of T2D among offspring could be explained by T2D susceptibility genes shared between the mother and her offspring. Epigenetic mechanisms may explain the link between factors operating in fetal life and later risk of developing T2D, but so far convincing evidence is lacking for epigenetic changes as a prime and direct cause of T2D. This review addresses recent literature on the early origins of adult disease hypothesis, with a special emphasis on the role of genetic compared with nongenetic and epigenetic risk determinants and disease mechanisms.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Gestacional/fisiopatologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Desenvolvimento Fetal/genética , Desenvolvimento Fetal/fisiologia , Predisposição Genética para Doença/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Adulto , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Gestacional/epidemiologia , Feminino , Predisposição Genética para Doença/epidemiologia , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Fatores de Risco
8.
Gut Microbes ; 15(2): 2281012, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992398

RESUMO

The intestinal epithelium is constantly exposed to microbes residing in the lumen. Traditionally, the response to microbial interactions has been studied in cell lines derived from cancerous tissues, e.g. Caco-2. It is, however, unclear how the responses in these cancer cell lines reflect the responses of a normal epithelium and whether there might be microbial strain-specific effects. To address these questions, we derived organoids from the small intestine from a cohort of healthy individuals. Culturing intestinal epithelium on a flat laminin matrix induced their differentiation, facilitating analysis of microbial responses via the apical membrane normally exposed to the luminal content. Here, it was evident that the healthy epithelium across multiple individuals (n = 9) demonstrates robust acute both common and strain-specific responses to a range of probiotic bacterial strains (BB-12Ⓡ, LGGⓇ, DSM33361, and Bif195). Importantly, parallel experiments using the Caco-2 cell line provide no acute response. Collectively, we demonstrate that primary epithelial cells maintained as organoids represent a valuable resource for assessing interactions between the epithelium and luminal microbes across individuals, and that these models are likely to contribute to a better understanding of host microbe interactions.


Assuntos
Microbioma Gastrointestinal , Humanos , Células CACO-2 , Células Epiteliais/metabolismo , Organoides , Epitélio , Mucosa Intestinal/microbiologia
9.
Am J Physiol Endocrinol Metab ; 303(2): E283-92, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22649064

RESUMO

The cytokine leukemia-inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of muscle precursor cells, an important feature of skeletal muscle maintenance and repair. We hypothesized that muscle precursor cells from patients with type 2 diabetes had a deficient response to LIF. The mRNA and protein expressions of LIF and its receptor (LIFR) were measured in skeletal muscle biopsies from healthy individuals and patients with type 2 diabetes by use of qPCR and Western blot. LIF signaling and response were studied following administration of recombinant LIF and siRNA knockdown of suppressor of cytokine signaling (SOCS)3 in myoblast cultures established from healthy individuals and patients with type 2 diabetes. Myoblast proliferation rate was assessed by bromodeoxyuridine incorporation. LIF and LIFR proteins were increased in both muscle tissue and cultured myoblasts from diabetic patients. Nonetheless, in the diabetic myoblasts, LIF-induced phosphorylation of signal transducer and activator of transcription (STAT)1 and STAT3 was impaired. The deficient response to LIF administration in the diabetic myoblasts was further emphasized by a lack of increase in LIF-stimulated cell proliferation and a decreased LIF-stimulated induction of the proliferation-promoting factors cyclin D1, JunB, and c-myc. SOCS3 protein was upregulated in diabetic myoblasts, and knockdown of SOCS3 rescued LIF-induced gene expression in diabetic myoblasts, whereas neither STAT1 or STAT3 signaling nor proliferation rate was affected. In conclusion, although LIF and LIFR proteins were increased in muscle tissue and myoblasts from diabetic patients, LIF signaling and LIF-stimulated cell proliferation were impaired in diabetic myoblasts, suggesting a novel mechanism by which muscle function is compromised in diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fator Inibidor de Leucemia/metabolismo , Mioblastos Esqueléticos/metabolismo , Transdução de Sinais/fisiologia , Adulto , Proliferação de Células , Feminino , Humanos , Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/biossíntese , Masculino , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/biossíntese
10.
Microbiol Spectr ; 10(3): e0234821, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35475684

RESUMO

The purpose of this trial was to evaluate the efficacy of a 4-week supplementation of Lactobacillus rhamnosus GG (LGG) in eliminating the gastrointestinal carrier state of vancomycin-resistant Enterococcus faecium (VREfm) in hospitalized adults. The primary outcome of the study was the number of patients with cleared VREfm colonization after the 4-week intervention. Secondary outcomes were clearance of VREfm colonization at weeks 8, 16, and 24, number of VREfm infections (isolated from nonintestinal foci), and changes in fecal microbiome diversity after the intervention. The trial was a multicenter, randomized, double-blind, placebo-controlled trial in hospitalized adult VREfm carriers. Patients were enrolled and randomized to receive 60 billion CFU of LGG daily or placebo for 4 weeks. For a subgroup of patients, rectal swabs for VREfm were collected also at 8, 16, and 24 weeks and analyzed using shotgun metagenomics. Patients ingesting a minimum of 50% of the probiotic during the 4-week intervention were included in subsequent outcome analyses (48 of 81 patients). Twelve of 21 patients in the LGG group (57%) compared to 15 of 27 patients in the placebo group (56%) cleared their VREfm carriage. Eighteen patients completed the entire 24-week intervention with the same minimum compliancy. Of these, almost 90% in both groups cleared their VREfm carriage. We found a statistically significant difference between VREfm clearers and nonclearers regarding metronidazole and vancomycin usage as well as length of hospitalization after inclusion. The microbiome analyses revealed no significant difference in alpha diversity between the LGG and the placebo group. Beta diversity differed between the groups and the different time points. This study did not show an effect of LGG in eradication of VREfm after a 4-week intervention. IMPORTANCE Whereas other studies exploring the effect of L. rhamnosus in clearing VREfm from the intestine included children and adults, with a wider age range, our study consisted of a geriatric patient cohort. The natural clearance of VREfm in this study was almost 60% after 4 weeks, thus much higher than described previously. Also, this study characterizes the microbiome of VREfm patients in detail. This article showed no effect of the probiotic L. rhamnosus in clearing VREfm from the intestine of patients.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Lacticaseibacillus rhamnosus , Microbiota , Probióticos , Enterococos Resistentes à Vancomicina , Adulto , Idoso , Criança , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Probióticos/uso terapêutico , Vancomicina/farmacologia , Vancomicina/uso terapêutico
11.
Nat Commun ; 12(1): 2431, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893273

RESUMO

Insulin resistance and lower muscle quality (strength divided by mass) are hallmarks of type 2 diabetes (T2D). Here, we explore whether alterations in muscle stem cells (myoblasts) from individuals with T2D contribute to these phenotypes. We identify VPS39 as an important regulator of myoblast differentiation and muscle glucose uptake, and VPS39 is downregulated in myoblasts and myotubes from individuals with T2D. We discover a pathway connecting VPS39-deficiency in human myoblasts to impaired autophagy, abnormal epigenetic reprogramming, dysregulation of myogenic regulators, and perturbed differentiation. VPS39 knockdown in human myoblasts has profound effects on autophagic flux, insulin signaling, epigenetic enzymes, DNA methylation and expression of myogenic regulators, and gene sets related to the cell cycle, muscle structure and apoptosis. These data mimic what is observed in myoblasts from individuals with T2D. Furthermore, the muscle of Vps39+/- mice display reduced glucose uptake and altered expression of genes regulating autophagy, epigenetic programming, and myogenesis. Overall, VPS39-deficiency contributes to impaired muscle differentiation and reduced glucose uptake. VPS39 thereby offers a therapeutic target for T2D.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Diferenciação Celular/genética , Diabetes Mellitus Tipo 2/genética , Epigenômica/métodos , Mioblastos/metabolismo , Células-Tronco/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Proteínas Relacionadas à Autofagia/deficiência , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Epigênese Genética/genética , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Desenvolvimento Muscular/genética , Proteínas de Transporte Vesicular/deficiência
12.
Exerc Immunol Rev ; 16: 77-85, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20839492

RESUMO

During and following exercise skeletal muscle synthesises and releases a number of myokines that exert their effects either systemically or locally within the muscle. Several of these myokines influence metabolism, regeneration and/or hypertrophy and are therefore considered to be important contributing factors in muscle homeostasis and muscle adaptation to exercise training. Leukaemia inhibitory factor (LIF) is produced and released from muscle cells in vitro and from intact skeletal muscle in vivo. During exercise, skeletal muscle potently up-regulates LIF mRNA expression, likely due to oscillations in intracellular Ca2+ concentrations. However, circulating levels of LIF are not increased with exercise suggesting that LIF exerts its effect locally. LIF stimulates muscle satellite cell proliferation and is involved in muscle hypertrophy and regeneration. Thus, LIF may be produced by skeletal muscle during exercise to contribute to local aspects of muscle adaptation to exercise.


Assuntos
Exercício Físico/fisiologia , Fator Inibidor de Leucemia/metabolismo , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos
13.
Gut Microbes ; 12(1): 1-14, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33274667

RESUMO

The specific effects of administering live probiotics in the human gut are not well characterized. To this end, we investigated the immediate effect of Lactobacillus rhamnosus GG (LGG) in the jejunum of 27 healthy volunteers 2 h after ingestion using a combination of global RNA sequencing of human biopsies and bacterial DNA sequencing in a multi-visit, randomized, cross-over design (ClinicalTrials.gov number NCT03140878). While LGG was detectable in jejunum after 2 h in treated subjects, the gene expression response vs. placebo was subtle if assessed across all subjects. However, clustering analysis revealed that one-third of subjects exhibited a strong and consistent LGG response involving hundreds of genes, where genes related to B cell activation were upregulated, consistent with prior results in mice. Immunohistochemistry and single cell-based deconvolution analyses showed that this B cell signature likely is due to activation and proliferation of existing B cells rather than B cell immigration to the tissue. Our results indicate that the LGG strain has an immediate effect in the human gut in a subpopulation of individuals. In extension, our data strongly suggest that studies on in vivo probiotic effects in humans require large cohorts and must take individual variation into account.


Assuntos
Linfócitos B/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Jejuno/imunologia , Jejuno/microbiologia , Lacticaseibacillus rhamnosus/imunologia , Probióticos/farmacologia , Adulto , Estudos Cross-Over , DNA Bacteriano/genética , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Voluntários Saudáveis , Humanos , Ativação Linfocitária/imunologia , Masculino , Fatores Sexuais , Adulto Jovem
14.
Front Pharmacol ; 10: 980, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555138

RESUMO

Acute respiratory tract infections (RTIs) of viral origin place a substantial burden on health care resources and society. Randomized controlled trials have shown positive effects of probiotics on clinical outcomes in these commonly occurring RTIs. Two meta-analyses published by the York Health Economics Consortium (YHEC) and Cochrane reported the efficacy of probiotics in reducing incidence and duration of RTIs, number of antibiotic courses, and days absent from work. The aim of this study was to assess the potential health-economic impact of probiotics on RTI-associated events and expenses in the US primary care setting. A state-transition microsimulation model reproduced a study population representative of the US national demographics for age and gender (1/1,000 sample). RTI incidence was based on the influenza-like illness outpatient consultation rate reported by the Centers for Disease Control and Prevention (CDC) FluView. Data on vaccination, on factors that negatively impact RTI outcomes, on resource utilization, and on productivity loss were obtained from US national databases. Analyses were performed for both meta-analyses independently. Outcomes included cost savings for the health care payer, related to a reduced number of RTI episodes, less outpatient consultations, and decreased medical prescriptions as well as cost savings from a broader societal perspective related to productivity loss. The analysis showed that generalized probiotic intake in the US population for 2017-2018 would have allowed cost savings for the health care payer of 4.6 million USD based on the YHEC scenario and 373 million USD for the Cochrane scenario, by averting 19 million and 54.5 million RTI sick days, respectively, compared to no probiotics. Antibiotic prescriptions decreased with 1.39-2.16 million courses, whereas absence from work decreased by 3.58-4.2 million days when applying the YHEC and Cochrane data, respectively. When productivity loss is included, total savings for society represented 784 million or 1.4 billion USD for the YHEC and Cochrane scenarios, respectively. Subgroup analyses demonstrated an incremental benefit of probiotics in at-risk groups, which might be of relevance for targeted interventions. Sensitivity analyses confirmed the robustness of the model outcomes. Our analysis demonstrated a positive impact of probiotics on the health care and economic burden of flu-like RTIs. Improved disease outcomes translated into considerable cost savings for both the payer and society.

16.
Stem Cell Res Ther ; 10(1): 26, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646953

RESUMO

BACKGROUND: Sex differences are known to impact muscle phenotypes, metabolism, and disease risk. Skeletal muscle stem cells (satellite cells) are important for muscle repair and to maintain functional skeletal muscle. Here we studied, for the first time, effects of sex on DNA methylation and gene expression in primary human myoblasts (activated satellite cells) before and after differentiation into myotubes. METHOD: We used an array-based approach to analyse genome-wide DNA methylation and gene expression in myoblasts and myotubes from 13 women and 13 men. The results were followed up with a reporter gene assay. RESULTS: Genome-wide DNA methylation and gene expression differences between the sexes were detected in both myoblasts and myotubes, on the autosomes as well as the X-chromosome, despite lack of exposure to sex hormones and other factors that differ between sexes. Pathway analysis revealed higher expression of oxidative phosphorylation and other metabolic pathways in myoblasts from women compared to men. Oxidative phosphorylation was also enriched among genes with higher expression in myotubes from women. Forty genes in myoblasts and 9 in myotubes had differences in both DNA methylation and gene expression between the sexes, including LAMP2 and SIRT1 in myoblasts and KDM6A in myotubes. Furthermore, increased DNA methylation of LAMP2 promoter had negative effects on reporter gene expression. Five genes (CREB5, RPS4X, SYAP1, XIST, and ZRSR2) showed differential DNA methylation and gene expression between the sexes in both myoblasts and myotubes. Interestingly, differences in DNA methylation and expression between women and men were also found during differentiation (myoblasts versus myotubes), e.g., in genes involved in energy metabolism. Interestingly, more DNA methylation changes occur in women compared to men on autosomes. CONCLUSION: All together, we show that epigenetic and transcriptional differences exist in human myoblasts and myotubes as well as during differentiation between women and men. We believe that these intrinsic differences might contribute to sex dependent differences in muscular phenotypes.


Assuntos
Metilação de DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/metabolismo , Humanos , Pessoa de Meia-Idade , Fatores Sexuais
17.
J Physiol ; 586(8): 2195-201, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18292129

RESUMO

The leukaemia inhibitory factor (LIF) belongs to the interleukin (IL)-6 cytokine superfamily and is constitutively expressed in skeletal muscle. We tested the hypothesis that LIF expression in human skeletal muscle is regulated by exercise. Fifteen healthy young male volunteers performed either 3 h of cycle ergometer exercise at approximately 60% of VO2,max(n = 8) or rested (n = 7). Muscle biopsies were obtained from the vastus lateralis prior to exercise, immediately after exercise, and at 1.5, 3, 6 and 24 h post exercise. Control subjects had biopsy samples taken at the same time points as during the exercise trial. Skeletal muscle LIF mRNA increased immediately after the exercise and declined gradually during recovery. However, LIF protein was unchanged at the investigated time points. Moreover, we tested the hypothesis that LIF mRNA and protein expressions are modulated by calcium (Ca(2+)) in primary human skeletal myocytes. Treatment of myocytes with the Ca(2+) ionophore, ionomycin, for 6 h resulted in an increase in both LIF mRNA and LIF protein levels. This finding suggests that Ca(2+) may be involved in the regulation of LIF in endurance-exercised skeletal muscle. In conclusion, primary human skeletal myocytes have the capability to produce LIF in response to ionomycin stimulation and LIF mRNA levels increase in skeletal muscle following concentric exercise. The finding that the increase in LIF mRNA levels is not followed by a similar increase in skeletal muscle LIF protein suggests that other exercise stimuli or repetitive stimuli are necessary in order to induce a detectable accumulation of LIF protein.


Assuntos
Regulação da Expressão Gênica/fisiologia , Fator Inibidor de Leucemia/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Esforço Físico/fisiologia , Adulto , Células Cultivadas , Humanos , Masculino
18.
J Clin Endocrinol Metab ; 93(11): 4486-93, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18697873

RESUMO

OBJECTIVE: IL-15 decreases lipid deposition in preadipocytes and decreases the mass of white adipose tissue in rats, indicating that IL-15 may take part in regulating this tissue. IL-15 is expressed in human skeletal muscle and skeletal muscle may be a source of plasma IL-15 and in this way regulate adipose tissue mass. DESIGN: The relation between skeletal muscle IL-15 mRNA expression, plasma IL-15, and adipose tissue mass was studied in 199 humans divided into four groups on the basis of obesity and type 2 diabetes. Furthermore, using a DNA electrotransfer model, we assessed the effect of IL-15 overexpression in skeletal muscle of mice. RESULTS: In humans, multiple regression analysis showed a negative association between plasma IL-15 and total fat mass (P<0.05), trunk fat mass (P<0.01), and percent fat mass (P<0.05), independent of type 2 diabetes. Negative associations were also found between muscle IL-15 mRNA and obesity parameters. IL-15 overexpression in skeletal muscle of mice reduced trunk fat mass but not sc fat mass. CONCLUSIONS: Our results indicate that IL-15 may be a regulator of trunk fat mass.


Assuntos
Tecido Adiposo/anatomia & histologia , Interleucina-15/fisiologia , Obesidade/fisiopatologia , Adipócitos/fisiologia , Tecido Adiposo/fisiologia , Animais , Composição Corporal , Índice de Massa Corporal , Estudos de Casos e Controles , Estudos Transversais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Teste de Tolerância a Glucose , Homeostase , Humanos , Interleucina-15/sangue , Interleucina-15/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Aptidão Física , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Genome Med ; 9(1): 47, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545587

RESUMO

BACKGROUND: Skeletal muscle is one of the primary tissues involved in the development of type 2 diabetes (T2D). The close association between obesity and T2D makes it difficult to isolate specific effects attributed to the disease alone. Therefore, here we set out to identify and characterize intrinsic properties of myocytes, associated independently with T2D or obesity. METHODS: We generated and analyzed RNA-seq data from primary differentiated myotubes from 24 human subjects, using a factorial design (healthy/T2D and non-obese/obese), to determine the influence of each specific factor on genome-wide transcription. This setup enabled us to identify intrinsic properties, originating from muscle precursor cells and retained in the corresponding myocytes. Bioinformatic and statistical methods, including differential expression analysis, gene-set analysis, and metabolic network analysis, were used to characterize the different myocytes. RESULTS: We found that the transcriptional program associated with obesity alone was strikingly similar to that induced specifically by T2D. We identified a candidate epigenetic mechanism, H3K27me3 histone methylation, mediating these transcriptional signatures. T2D and obesity were independently associated with dysregulated myogenesis, down-regulated muscle function, and up-regulation of inflammation and extracellular matrix components. Metabolic network analysis identified that in T2D but not obesity a specific metabolite subnetwork involved in sphingolipid metabolism was transcriptionally regulated. CONCLUSIONS: Our findings identify inherent characteristics in myocytes, as a memory of the in vivo phenotype, without the influence from a diabetic or obese extracellular environment, highlighting their importance in the development of T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Histonas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Obesidade/genética , Adulto , Biologia Computacional , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Inflamação , Masculino , Metilação , Pessoa de Meia-Idade , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/patologia , Obesidade/patologia , Obesidade/fisiopatologia , Análise de Sequência de RNA , Esfingolipídeos/metabolismo
20.
Clin Epigenetics ; 9: 37, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413567

RESUMO

BACKGROUND: Offspring of women with diabetes in pregnancy are at increased risk of type 2 diabetes mellitus (T2DM), potentially mediated by epigenetic mechanisms. The adipokines leptin, adiponectin, and resistin (genes: LEP, ADIPOQ, RETN) play key roles in the pathophysiology of T2DM. We hypothesized that offspring exposed to maternal diabetes exhibit alterations in epigenetic regulation of subcutaneous adipose tissue (SAT) adipokine transcription. We studied adipokine plasma levels, SAT gene expression, and DNA methylation of LEP, ADIPOQ, and RETN in adult offspring of women with gestational diabetes (O-GDM, N = 82) or type 1 diabetes (O-T1DM, N = 67) in pregnancy, compared to offspring of women from the background population (O-BP, N = 57). RESULTS: Compared to O-BP, we found elevated plasma leptin and resistin levels in O-T1DM, decreased gene expression of all adipokines in O-GDM, decreased RETN expression in O-T1DM, and increased LEP and ADIPOQ methylation in O-GDM. In multivariate regression analysis, O-GDM remained associated with increased ADIPOQ methylation and decreased ADIPOQ and RETN gene expression and O-T1DM remained associated with decreased RETN expression after adjustment for potential confounders and mediators. CONCLUSIONS: In conclusion, offspring of women with diabetes in pregnancy exhibit increased ADIPOQ DNA methylation and decreased ADIPOQ and RETN gene expression in SAT. However, altered methylation and expression levels were not reflected in plasma protein levels, and the functional implications of these findings remain uncertain.


Assuntos
Adiponectina/genética , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Leptina/genética , Exposição Materna/efeitos adversos , Resistina/genética , Gordura Subcutânea/metabolismo , Adiponectina/sangue , Adiponectina/metabolismo , Filhos Adultos , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Gestacional/epidemiologia , Epigênese Genética , Feminino , Seguimentos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Leptina/sangue , Gravidez , Resistina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA