Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hepatol ; 77(6): 1631-1641, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35988690

RESUMO

BACKGROUND & AIMS: Primary liver cancers include hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (CCA) and combined HCC-CCA tumors (cHCC-CCA). It has been suggested, but not unequivocally proven, that hepatic progenitor cells (HPCs) can contribute to hepatocarcinogenesis. We aimed to determine whether HPCs contribute to HCC, cHCC-CCA or both types of tumors. METHODS: To trace progenitor cells during hepatocarcinogenesis, we generated Mdr2-KO mice that harbor a yellow fluorescent protein (YFP) reporter gene driven by the Foxl1 promoter which is expressed specifically in progenitor cells. These mice (Mdr2-KOFoxl1-CRE;RosaYFP) develop chronic inflammation and HCCs by the age of 14-16 months, followed by cHCC-CCA tumors at the age of 18 months. RESULTS: In this Mdr2-KOFoxl1-CRE;RosaYFP mouse model, liver progenitor cells are the source of cHCC-CCA tumors, but not the source of HCC. Ablating the progenitors, caused reduction of cHCC-CCA tumors but did not affect HCCs. RNA-sequencing revealed enrichment of the IL-6 signaling pathway in cHCC-CCA tumors compared to HCC tumors. Single-cell RNA-sequencing (scRNA-seq) analysis revealed that IL-6 is expressed by immune and parenchymal cells during senescence, and that IL-6 is part of the senescence-associated secretory phenotype. Administration of an anti-IL-6 antibody to Mdr2-KOFoxl1-CRE;RosaYFP mice inhibited the development of cHCC-CCA tumors. Blocking IL-6 trans-signaling led to a decrease in the number and size of cHCC-CCA tumors, indicating their dependence on this pathway. Furthermore, the administration of a senolytic agent inhibited IL-6 and the development of cHCC-CCA tumors. CONCLUSION: Our results demonstrate that cHCC-CCA, but not HCC tumors, originate from HPCs, and that IL-6, which derives in part from cells in senescence, plays an important role in this process via IL-6 trans-signaling. These findings could be applied to develop new therapeutic approaches for cHCC-CCA tumors. LAY SUMMARY: Combined hepatocellular carcinoma-cholangiocarcinoma is the third most prevalent type of primary liver cancer (i.e. a cancer that originates in the liver). Herein, we show that this type of cancer originates in stem cells in the liver and that it depends on inflammatory signaling. Specifically, we identify a cytokine called IL-6 that appears to be important in the development of these tumors. Our results could be used for the development of novel treatments for these aggressive tumors.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Células-Tronco , Transdução de Sinais , Carcinogênese , RNA , Ductos Biliares Intra-Hepáticos , Fatores de Transcrição Forkhead
2.
J Autoimmun ; 112: 102462, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32561150

RESUMO

Nodding Syndrome (NS) is a fatal pediatric epilepsy of unknown etiology, accompanied by multiple neurological impairments, and associated with Onchocerca volvulus (Ov), malnutrition, war-induced trauma, and other insults. NS patients have neuroinflammation, and ~50% have cross-reactive Ov/Leiomodin-1 neurotoxic autoimmune antibodies. RESULTS: Studying 30 South Sudanese NS patients and a similar number of healthy subjects from the same geographical region, revealed autoimmune antibodies to 3 extracellular peptides of ionotropic glutamate receptors in NS patients: AMPA-GluR3B peptide antibodies (86%), NMDA-NR1 peptide antibodies (77%) and NMDA-NR2 peptide antibodies (87%) (in either 1:10, 1:100 or 1:1000 serum dilution). In contrast, NS patients did not have 26 other well-known autoantibodies that target the nervous system in several autoimmune-mediated neurological diseases. We demonstrated high expression of both AMPA-GluR3 and NMDA-NR1 in human neural cells, and also in normal human CD3+ T cells of both helper CD4+ and cytotoxic CD8+ types. Patient's GluR3B peptide antibodies were affinity-purified, and by themselves precipitated short 70 kDa neuronal GluR3. NS patient's affinity-purified GluR3B peptide antibodies also bound to, induced Reactive Oxygen Species (ROS) in, and killed both human neural cells and T cells within 1-2 hours only. NS patient's purified IgGs, or serum (1:10 or 1:30), induced similar effects. In vivo video EEG experiments in normal mice, revealed that when NS patient's purified IgGs were released continuously (24/7 for 1 week) in normal mouse brain, they induced all the following: 1.Seizures, 2. Cerebellar Purkinje cell loss, 3. Degeneration in the hippocampus and cerebral cortex, and 4. Elevation of CD3+ T cells, and of activated Mac-2+microglia and GFAP+astrocytes in both the gray and white matter of the cerebral cortex, hippocampus, corpus calossum and cerebellum of mice. NS patient's serum cytokines: IL-1ß, IL-2, IL-6, IL-8, TNFα, IFNγ, are reduced by 85-99% compared to healthy subjects, suggesting severe immunodeficiency in NS patients. This suspected immunodeficiency could be caused by combined effects of the: 1. Chronic Ov infection, 2. Malnutrition, 3. Killing of NS patient's T cells by patient's own GluR3B peptide autoimmune antibodies (alike the killing of normal human T cells by the NS patient's GluR3B peptide antibodies found herein in vitro). CONCLUSIONS: Regardless of NS etiology, NS patients suffer from 'Dual-targeted Autoimmune Sword': autoimmune AMPA GluR3B peptide antibodies that bind, induce ROS in, and kill both neural cells and T cells. These neurotoxic and immunotoxic GluR3B peptide autoimmune antibodies, and also NS patient's NMDA-NR1/NR2A and Ov/Leiomodin-1 autoimmune antibodies, must be silenced or removed. Moreover, the findings of this study are relevant not only to NS, but also to many more patients with other types of epilepsy, which have GluR3B peptide antibodies in serum and/or CSF. This claim is based on the following facts: 1. The GluR3 subunit is expressed in neural cells in crucial brains regions, in motor neurons in the spinal cord, and also in other cells in the body, among them T cells of the immune system, 2. The GluR3 subunit has diverse neurophysiological role, and its deletion or abnormal function can: disrupt oscillatory networks of both sleep and breathing, impair motor coordination and exploratory activity, and increase the susceptibility to generate seizures, 3. GluR3B peptide antibodies were found so far in ~27% of >300 epilepsy patients worldwide, which suffer from various other types of severe, intractable and enigmatic epilepsy, and which turned out to be 'Autoimmune Epilepsy'. Furthermore, the findings of this study could be relevant to different neurological diseases besides epilepsy, since other neurotransmitter-receptors autoantibodies are present in other neurological and psychiatric diseases, e.g. autoimmune antibodies against other GluRs, Dopamine receptors, GABA receptors, Acetylcholine receptors and others. These neurotransmitter-receptors autoimmune autoantibodies might also act as 'Dual-targeted Autoimmune Sword' and damage both neural cells and T cells (as the AMPA-GluR3B peptide antibodies induced in the present study), since T cells, alike neural cells, express most if not all these neurotransmitter receptors, and respond functionally to the respective neurotransmitters - a scientific and clinical topic we coined 'Nerve-Driven Immunity'.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Síndrome do Cabeceio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de AMPA/imunologia , Adolescente , Adulto , Autoanticorpos/sangue , Autoanticorpos/isolamento & purificação , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Voluntários Saudáveis , Humanos , Imunoglobulina G , Masculino , Neuroimunomodulação/imunologia , Neurônios/imunologia , Neurônios/patologia , Síndrome do Cabeceio/sangue , Síndrome do Cabeceio/patologia , Linfócitos T/imunologia , Linfócitos T/patologia , Adulto Jovem
3.
Sleep ; 46(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35767600

RESUMO

STUDY OBJECTIVES: Wearable sleep technology has rapidly expanded across the consumer market due to advances in technology and increased interest in personalized sleep assessment to improve health and mental performance. We tested the performance of a novel device, the Happy Ring, alongside other commercial wearables (Actiwatch 2, Fitbit Charge 4, Whoop 3.0, Oura Ring V2), against in-lab polysomnography (PSG) and at-home electroencephalography (EEG)-derived sleep monitoring device, the Dreem 2 Headband. METHODS: Thirty-six healthy adults with no diagnosed sleep disorders and no recent use of medications or substances known to affect sleep patterns were assessed across 77 nights. Subjects participated in a single night of in-lab PSG and two nights of at-home data collection. The Happy Ring includes sensors for skin conductance, movement, heart rate, and skin temperature. The Happy Ring utilized two machine-learning derived scoring algorithms: a "generalized" algorithm that applied broadly to all users, and a "personalized" algorithm that adapted to individual subjects' data. Epoch-by-epoch analyses compared the wearable devices to in-lab PSG and to at-home EEG Headband. RESULTS: Compared to in-lab PSG, the "generalized" and "personalized" algorithms demonstrated good sensitivity (94% and 93%, respectively) and specificity (70% and 83%, respectively). The Happy Personalized model demonstrated a lower bias and more narrow limits of agreement across Bland-Altman measures. CONCLUSION: The Happy Ring performed well at home and in the lab, especially regarding sleep/wake detection. The personalized algorithm demonstrated improved detection accuracy over the generalized approach and other devices, suggesting that adaptable, dynamic algorithms can enhance sleep detection accuracy.


Assuntos
Actigrafia , Sono , Adulto , Humanos , Reprodutibilidade dos Testes , Sono/fisiologia , Polissonografia , Algoritmos
4.
ACG Case Rep J ; 10(8): e01131, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37601299

RESUMO

Many patients with ulcerative colitis after ileoanal pouch anastomosis report improvement of pouchitis with the use of cannabis. Nine patients with chronic pouchitis used 1 g/d of cannabis: 7 patients were male with average age 51 ± 16 years. Average partial pouchitis disease activity index were 11 (range 8-17), 6 (range 5-8), and 5 (range 4-8); endoscopic subscores were 7 .3 ± 2.3, 6 ± 1.1, and 4.4 ± 0.9; average bowel movements per day were 14 (range 8-20), 8 (range 2-13), and 10 (range 13-8); and quality of life increased from 72 ± 1 to 90 ± 16 and 97 ± 10 (P = 0.001) before cannabis treatment and after 8-12 and 52 weeks, respectively. No adverse events were reported.

5.
Plant Cell ; 21(9): 2829-43, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19773386

RESUMO

Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane. Electrophysiological experiments revealed the presence of a Ca(2+)-permeable channel in the plasma membrane that is transiently activated by mild temperature increments or chemical perturbations of membrane fluidity. The amplitude of the Ca(2+) influx during the first minutes of a temperature stress modulated the intensity of the HSR, and Ca(2+) channel blockers prevented HSR and the onset of thermotolerance. Our data suggest that early sensing of mild temperature increments occurs at the plasma membrane of plant cells independently from cytosolic protein unfolding. The heat signal is translated into an effective HSR by way of a specific membrane-regulated Ca(2+) influx, leading to thermotolerance.


Assuntos
Briófitas/fisiologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Resposta ao Choque Térmico/fisiologia , Briófitas/genética , Eletrofisiologia , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico
6.
Placenta ; 110: 29-38, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34116499

RESUMO

INTRODUCTION: Brief hypercapnic challenge causes acute placental hypoperfusion with fetal brain sparing on BOLD-MRI. We hypothesize that this non-invasive imaging strategy can distinguish between normal pregnancy and chronic placental hypoperfusion (using the maternal hypoxia model). METHODS: Eighteen pregnant female ICR mice were randomized to three groups: normoxia, late-onset hypoxia (12%O2;E13.5-17.5) and early-onset hypoxia (12%O2;E10.5-17.5). On E17.5, animals were imaged in a 4.7-T Bruker-Biospec MRI scanner. Fast coronal True-FISP was performed to identify organs of interest (placenta and fetal heart, liver and brain). BOLD-MRI was performed at baseline and during a 4-min hypercapnic challenge (5%CO2). %-change in placental and fetal signal was analyzed from T2*-weighted gradient echo MR images. Following MRI, fetuses and placentas were harvested, weighed and immuno-stained. RESULTS: In normoxic mice, hypercapnia caused reduction in BOLD-MRI signal in placenta (-44% ± 7%; p < 0.0001), fetal liver (-32% ± 7%; p < 0.0001) and fetal heart (-54% ± 12%; p < 0.002), with relative fetal brain sparing (-12% ± 5%; p < 0.0001). These changes were markedly attenuated in both hypoxia groups. Baseline fetal brain/placenta SI ratio was highest in normoxic mice (1.14 ± 0.017) and reduced with increasing duration of hypoxia (late-onset hypoxia: 1.00 ± 0.026; early-onset hypoxia: 0.91 ± 0.016; p = 0.02). Both hypoxic groups exhibited fetal growth restriction with prominent placental glycogen-containing cells, particularly in early-onset hypoxia. There was increased fetal neuro- and intestinal-apoptosis in early-onset hypoxia only. CONCLUSIONS: BOLD-MRI with brief hypercapnic challenge distinguished between normoxia and both hypoxia groups, while fetal neuroapoptosis was only observed after early-onset hypoxia. This suggests that BOLD-MRI with hypercapnic challenge can identify chronic fetal asphyxia before the onset of irreversible brain injury.


Assuntos
Feto/irrigação sanguínea , Hipercapnia/etiologia , Hipóxia/complicações , Placenta/irrigação sanguínea , Doença Aguda , Animais , Doença Crônica , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Retardo do Crescimento Fetal/diagnóstico por imagem , Retardo do Crescimento Fetal/patologia , Retardo do Crescimento Fetal/fisiopatologia , Hipóxia Fetal/diagnóstico por imagem , Hipóxia Fetal/etiologia , Hipóxia Fetal/patologia , Hipóxia Fetal/fisiopatologia , Feto/diagnóstico por imagem , Hemodinâmica , Hipercapnia/diagnóstico por imagem , Hipercapnia/patologia , Hipercapnia/fisiopatologia , Hipóxia/diagnóstico por imagem , Hipóxia/patologia , Hipóxia/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos ICR , Placenta/diagnóstico por imagem , Insuficiência Placentária/diagnóstico por imagem , Insuficiência Placentária/patologia , Insuficiência Placentária/fisiopatologia , Gravidez , Complicações na Gravidez/diagnóstico por imagem , Complicações na Gravidez/patologia , Complicações na Gravidez/fisiopatologia , Diagnóstico Pré-Natal/métodos
7.
Cancers (Basel) ; 13(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499244

RESUMO

The H19-derived microRNA-675 (miR-675) has been implicated as both tumor promoter and tumor suppressor and also plays a role in liver inflammation. We found that miR-675 promotes cell death in human hepatocellular carcinoma (HCC) cell lines. We show that Fas-associated protein with death domain (FADD), a mediator of apoptotic cell death signaling, is downregulated by miR-675 and a negative correlation exists between miR-675 and FADD expression in mouse models of HCC (p = 0.014) as well as in human samples (p = 0.017). We demonstrate in a mouse model of liver inflammation that overexpression of miR-675 promotes necroptosis, which can be inhibited by the necroptosis-specific inhibitor Nec-1/Nec-1s. miR-675 induces the level of both p-MLKL (Mixed Lineage Kinase Domain-Like Pseudokinase) and RIP3 (receptor-interacting protein 3), which are key signaling molecules in necroptosis, and enhances MLKL binding to RIP3. miR-675 also inhibits the levels of cleaved caspases 8 and 3, suggesting that miR-675 induces a shift from apoptosis to a necroptotic cellular pathway. In conclusion, downregulation of FADD by miR-675 promotes liver necroptosis in response to inflammatory signals. We propose that this regulation cascade can stimulate and enhance the inflammatory response in the liver, making miR-675 an important regulator in liver inflammation and potentially also in HCC.

8.
Placenta ; 90: 52-57, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32056552

RESUMO

INTRODUCTION: We previously reported blood oxygen level dependent MRI (BOLD-MRI) for monitoring placental and fetal hemodynamic changes in mice following maternal hypercapnia. Here we use BOLD-MRI to compare the placental and fetal hemodynamic effects of different maternal vasopressors in mice. METHODS: Pregnant ICR mice (n = 16; E17.5) anesthetized with pentobarbital (80 mg/kg i.p.) were placed supine in a 4.7-T Bruker Biospec MRI. Following baseline images, equipotential doses of ephedrine (10 mg/kg) or phenylephrine (10mcg/kg) were administered intravenously. Changes in placental and fetal signal were analyzed from T2*-weighted gradient echo MR images (TR/TE = 147/10 ms). Different regions of interest (placenta, fetal heart, fetal liver and fetal brain) were identified. Percentage change of BOLD-MRI signal intensity (SI) were presented as time curves. RESULTS: Ephedrine and phenylephrine elicited markedly different effects. Phenylephrine caused an approximate 50% reduction in placental, fetal heart and fetal liver BOLD-MRI-SI, but fetal brain BOLD-MRI-SI was unchanged (statistically different from placenta and other fetal organs; p < 0.001), and the fetal brain/liver BOLD-MRI-SI ratio was markedly increased versus baseline (p < 0.001). Following ephedrine, placental BOLD-MRI-SI increased 30% and fetal heart BOLD-MRI-SI was reduced 26%; other fetal organs were unchanged. Blood gases were unchanged. DISCUSSION: Phenylephrine induced BOLD-MRI-SI changes suggestive of placental and fetal hypoperfusion with brain sparing. Ephedrine induced BOLD-MRI-SI changes suggestive of increased cardiac output; we speculate that reduced fetal heart BOLD-MRI-SI may be due to increased fetal myocardial oxygen extraction or metabolic acidosis. The result demonstrates the potential of BOLD-MRI as a non-invasive hemodynamic tool for assessing pharmacodynamics effects in the placental and fetus.


Assuntos
Encéfalo/efeitos dos fármacos , Efedrina/farmacologia , Feto/efeitos dos fármacos , Fenilefrina/farmacologia , Placenta/efeitos dos fármacos , Vasoconstritores/farmacologia , Animais , Encéfalo/diagnóstico por imagem , Feminino , Feto/diagnóstico por imagem , Hemodinâmica/efeitos dos fármacos , Imageamento por Ressonância Magnética , Camundongos , Placenta/diagnóstico por imagem , Gravidez
9.
J Hematol Oncol ; 13(1): 158, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239060

RESUMO

BACKGROUND: Chemoresistance remains a major treatment obstacle in multiple myeloma (MM). Novel new therapies are thus in need. Transient Receptor Potential Vanilloid type 1 (TRPV1) is a calcium-permeable ion channel that has been demonstrated to be expressed in solid tumors. Calcium channels have been shown to be involved in the regulation of cell proliferation, chemoresistance, migration and invasion. The aim of the current study was to evaluate its possible role in MM. METHODS: Pharmacological inhibitor was used to evaluate the role of TRPV1 in MM cell lines and primary MM cells. Flow cytometry, molecular analysis, fluorescent microscopy, proteomic analysis and xenograft in vivo model of MM with BM involvement were employed to assess the effect of TRPV1 inhibition and decipher its unique mechanism of action in MM. RESULTS: TRPV1 was found to be expressed by MM cell lines and primary MM cells. TRPV1 inhibition using the antagonist AMG9810-induced MM cell apoptosis and synergized with bortezomib, overcoming both CXCR4-dependent stroma-mediated and acquired resistance. In accordance, AMG9810 suppressed the expression and activation of CXCR4 in MM cells. TRPV1 inhibition increased mitochondrial calcium levels with subsequent mitochondrial ROS accumulation and depolarization. These effects were reversed by calcium chelation, suggesting the role of calcium perturbations in oxidative stress and mitochondrial destabilization. Furthermore, AMG9810 abolished bortezomib-induced accumulation of mitochondrial HSP70 and suppressed protective mitochondrial unfolded protein response. Proteomics revealed unique molecular signature related to the modification of ubiquitin signaling pathway. Consequently, 38 proteins related to the ubiquitylation machinery were downregulated upon combined bortezomib/AMG9810 treatment. Concomitantly, AMG9810 abolished bortezomib-induced ubiquitination of cytosolic and mitochondrial proteins. Furthermore, bortezomib/AMG9810 treatment induced mitochondrial accumulation of PINK1, significantly reduced the mitochondrial mass and promoted mitochondrial-lysosomal fusion, indicating massive mitophagy. Finally, in a recently developed xenograft model of systemic MM with BM involvement, bortezomib/AMG9810 treatment effectively reduced tumor burden in the BM of MM-bearing mice. CONCLUSIONS: Altogether, our results unravel the mechanism mediating the strong synergistic anti-MM activity of bortezomib in combination with TRPV1 inhibition which may be translated into the clinic.


Assuntos
Acrilamidas/farmacologia , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Mitofagia/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Canais de Cátion TRPV/antagonistas & inibidores , Acrilamidas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Bortezomib/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Mieloma Múltiplo/metabolismo , Canais de Cátion TRPV/metabolismo , Ubiquitina/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
10.
eNeuro ; 6(6)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31776177

RESUMO

Visuomotor rotations are learned through a combination of explicit strategy and implicit recalibration. However, measuring the relative contribution of each remains a challenge and the possibility of multiple explicit and implicit components complicates the issue. Recent interest has focused on the possibility that eye movements reflects explicit strategy. Here we compared eye movements during adaptation to two accepted measures of explicit learning: verbal report and the exclusion test. We found that while reporting, all subjects showed a match among all three measures. However, when subjects did not report their intention, the eye movements of some subjects suggested less explicit adaptation than what was measured in an exclusion test. Interestingly, subjects whose eye movements did match their exclusion could be clustered into the following two subgroups: fully implicit learners showing no evidence of explicit adaptation and explicit learners with little implicit adaptation. Subjects showing a mix of both explicit and implicit adaptation were also those where eye movements showed less explicit adaptation than did exclusion. Thus, our results support the idea of multiple components of explicit learning as only part of the explicit learning is reflected in the eye movements. Individual subjects may use explicit components that are reflected in the eyes or those that are not or some mixture of the two. Analysis of reaction times suggests that the explicit components reflected in the eye movements involve longer reaction times. This component, according to recent literature, may be related to mental rotation.


Assuntos
Adaptação Fisiológica/fisiologia , Movimentos Oculares/fisiologia , Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Adulto Jovem
11.
Crit Care Med ; 36(1): 246-55, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17989570

RESUMO

OBJECTIVE: Fibrotic changes are initiated early in acute respiratory distress syndrome. This may involve overproliferation of alveolar type II cells. In an animal model of acute respiratory distress syndrome, we have shown that the administration of an adenoviral vector overexpressing the 70-kd heat shock protein (AdHSP) limited pathophysiological changes. We hypothesized that this improvement may be modulated, in part, by an early AdHSP-induced attenuation of alveolar type II cell proliferation. DESIGN: Laboratory investigation. SETTING: Hadassah-Hebrew University and University of Pennsylvania animal laboratories. SUBJECTS: Sprague-Dawley Rats (250 g). INTERVENTIONS: Lung injury was induced in male Sprague-Dawley rats via cecal ligation and double puncture. At the time of cecal ligation and double puncture, we injected phosphate-buffered saline, AdHSP, or AdGFP (an adenoviral vector expressing the marker green fluorescent protein) into the trachea. Rats then received subcutaneous bromodeoxyuridine. In separate experiments, A549 cells were incubated with medium, AdHSP, or AdGFP. Some cells were also stimulated with tumor necrosis factor-alpha. After 48 hrs, cytosolic and nuclear proteins from rat lungs or cell cultures were isolated. These were subjected to immunoblotting, immunoprecipitation, electrophoretic mobility shift assay, fluorescent immunohistochemistry, and Northern blot analysis. MEASUREMENTS AND MAIN RESULTS: Alveolar type I cells were lost within 48 hrs of inducing acute respiratory distress syndrome. This was accompanied by alveolar type II cell proliferation. Treatment with AdHSP preserved alveolar type I cells and limited alveolar type II cell proliferation. Heat shock protein 70 prevented overexuberant cell division, in part, by inhibiting hyperphosphorylation of the regulatory retinoblastoma protein. This prevented retinoblastoma protein ubiquitination and degradation and, thus, stabilized the interaction of retinoblastoma protein with E2F1, a key cell division transcription factor. CONCLUSIONS: : Heat shock protein 70-induced attenuation of cell proliferation may be a useful strategy for limiting lung injury when treating acute respiratory distress syndrome if consistent in later time points.


Assuntos
Divisão Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Proteínas de Choque Térmico HSP70/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações , Resultado do Tratamento
12.
Respir Res ; 8: 74, 2007 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-17967178

RESUMO

BACKGROUND: Sepsis remains the leading cause of death in critically ill patients. One of the primary organs affected by sepsis is the lung, presenting as the Acute Respiratory Distress Syndrome (ARDS). Organ damage in sepsis involves an alteration in gene expression, making gene transfer a potential therapeutic modality. This work examines the feasibility of applying simian virus 40 (SV40) vectors for pulmonary gene therapy. METHODS: Sepsis-induced ARDS was established by cecal ligation double puncture (2CLP). SV40 vectors carrying the luciferase reporter gene (SV/luc) were administered intratracheally immediately after sepsis induction. Sham operated (SO) as well as 2CLP rats given intratracheal PBS or adenovirus expressing luciferase served as controls. Luc transduction was evaluated by in vivo light detection, immunoassay and luciferase mRNA detection by RT-PCR in tissue harvested from septic rats. Vector abundance and distribution into alveolar cells was evaluated using immunostaining for the SV40 VP1 capsid protein as well as by double staining for VP1 and for the surfactant protein C (proSP-C). Immunostaining for T-lymphocytes was used to evaluate the cellular immune response induced by the vector. RESULTS: Luc expression measured by in vivo light detection correlated with immunoassay from lung tissue harvested from the same rats. Moreover, our results showed vector presence in type II alveolar cells. The vector did not induce significant cellular immune response. CONCLUSION: In the present study we have demonstrated efficient uptake and expression of an SV40 vector in the lungs of animals with sepsis-induced ARDS. These vectors appear to be capable of in vivo transduction of alveolar type II cells and may thus become a future therapeutic tool.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Síndrome do Desconforto Respiratório/terapia , Vírus 40 dos Símios/genética , Animais , Proteínas do Capsídeo/metabolismo , Genes Reporter/genética , Vetores Genéticos/genética , Luciferases/genética , Luciferases/metabolismo , Pulmão/enzimologia , Pulmão/patologia , Alvéolos Pulmonares/enzimologia , Alvéolos Pulmonares/patologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório/microbiologia , Sepse/complicações , Linfócitos T/imunologia , Transdução Genética
13.
Front Mol Biosci ; 3: 12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200359

RESUMO

The heat shock response (HSR) is a cellular response to diverse environmental and physiological stressors resulting in the induction of genes encoding molecular chaperones, proteases, and other proteins that are essential for protection and recovery from cellular damage. Since different perturbations cause accumulation of misfolded proteins, cells frequently encounter fluctuations in the environment which alter proteostasis. Since tumor cells use their natural adaptive mechanism of coping with stress and misfolded proteins, in recent years, the proteostasis network became a promising target for anti-tumor therapy. The membrane is the first to be affected by heat shock and therefore may be the first one to sense heat shock. The membrane also connects between the extracellular and the intracellular signals. Hence, there is a "cross talk" between the HSR and the membranes since heat shock can induce changes in the fluidity of membranes, leading to membrane lipid remodeling that occurs in several diseases such as cancer. During the last decade, a new possible therapy has emerged in which an external molecule is used that could induce membrane lipid re-organization. Since at the moment there are very few substances that regulate the HSR effectively, an alternative way has been searched to modulate chaperone activities through the plasma membrane. Recently, we suggested that the use of the membrane Transient Receptor Potential Vanilloid-1 (TRPV1) modulators regulated the HSR in cancer cells. However, the primary targets of the signal transduction pathway are yet un-known. This review provides an overview of the current literature regarding the role of HSR in membrane remodeling in cancer since a deep understanding of the membrane biology in cancer and the membrane heat sensing pathway is essential to design novel efficient therapies.

14.
Oncotarget ; 6(33): 34691-703, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26415227

RESUMO

The function of imprinted H19 long non-coding RNA is still controversial. It is highly expressed in early embryogenesis and decreases after birth and re-expressed in cancer. To study the role of H19 in oncogenesis and pluripotency, we down-regulated H19 expression in vitro and in vivo in pluripotent human embryonic carcinoma (hEC) and embryonic stem (hES) cells. H19 knockdown resulted in a decrease in the expression of the pluripotency markers Oct4, Nanog, TRA-1-60 and TRA-1-81, and in the up-regulation of SSEA1; it further attenuated cell proliferation, decreased cell-matrix attachment, and up-regulated E-Cadherin expression. SCID-Beige mice transplanted with H19 down-regulated hEC cells exhibited slower kinetics of tumor formation, resulting in an increased animal survival. Tumors derived from H19 down-regulated cells showed a decrease in the expression of pluripotency markers and up-regulation of SSEA-1 and E-cadherin. Our results suggest that H19 oncogenicity in hEC cells is mediated through the regulation of the pluripotency state.


Assuntos
Transformação Celular Neoplásica/genética , Células-Tronco Embrionárias , Células-Tronco Pluripotentes , RNA Longo não Codificante/genética , Animais , Western Blotting , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos SCID , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , RNA Interferente Pequeno , Transfecção
15.
Physiol Genomics ; 14(1): 17-24, 2003 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-12686697

RESUMO

Chronic exposure to environmental heat improves tolerance via heat acclimation (AC). Our previous data on mammals indicate that reprogramming the expression of genes coding for stress proteins and energy-metabolism enzymes plays a major role. Knowledge of pathways leading to AC is limited. For their identification, we established a Caenorhabditis elegans AC model and tested mutants in which signaling pathways pertinent to acclimatory responses are mutated. AC attained by maintaining adult C. elegans at 25 degrees C for 18 h enhanced heat endurance of wild-type worms subjected to heat stress (35 degrees C) and conferred protection against hypoxia and cadmium. Survival curves demonstrated that both daf-2 (insulin receptor pathway) showing enhanced heat tolerance and daf-16 loss-of-function (a transcription factor mediating DAF-2 signaling) mutants benefit from AC, suggesting that the insulin receptor pathway does not mediate AC. In contrast, the hif-1 (hypoxia inducible factor) loss-of-function strain did not show acclimation, and non-acclimated vhl-1 and egl-9 mutants (overexpressing HIF-1) had greater heat endurance than the wild type. Like mammals, HIF-1 and HSP72 levels increased in the wild-type AC nematodes. HSP72 upregulation in AC hif-1 mutants was also observed; however, it was insufficient to improve heat/stress tolerance, suggesting that HIF-1 upregulation is essential for acclimation, whereas HSP72 upregulation in the absence of HIF-1 is inadequate. We conclude that HIF-1 upregulation is both an evolutionarily conserved and a necessary component of heat acclimation. The known targets of HIF-1 imply that metabolic adaptations are essential for AC-dependent tolerance to heat and heavy metals, in addition to their known role in hypoxic adaptation.


Assuntos
Aclimatação/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/fisiologia , Temperatura Alta , Proteínas Nucleares/fisiologia , Fatores de Transcrição , Aclimatação/genética , Animais , Cádmio/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/fisiologia , Genes de Helmintos/genética , Genes de Helmintos/fisiologia , Fator 1 Induzível por Hipóxia , Metais Pesados/metabolismo , Mutação , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Fenótipo , Receptor de Insulina/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Análise de Sobrevida
16.
J Appl Physiol (1985) ; 93(6): 2095-104, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12391086

RESUMO

Based on our observations of energy sparing in heat-acclimated (AC) rat hearts, we investigated whether changes in preischemic glycogen level, glycolytic rate, and plasma thyroxine level mediate cardioprotection induced in these hearts during ischemia-reperfusion insults. Control (C) (24 degrees C), AC (34 degrees C, 30 days), acclimated-euthyroid (34 degrees C + 3 ng/ml l-thyroxine), and control hypothyroid (24 degrees C + 0.02% 6-n-propyl-2-thiouracil) groups were studied. Preischemic glycogen was higher in AC than in C hearts [39.0 +/- 8.5 vs. 19.2 +/- 4.2 (SE) micromol glucose/g wet wt; P < 0.0006], and the lactate produced vs. glycogen level during total ischemia ((13)C-NMR spectroscopy) was markedly slower (AC: -0.82x, r = 0.98 vs. C: -4.7x, r = 0.9). Time to onset of ischemic contracture was lengthened, and the fraction of hearts experiencing ischemic contracture was lowered. Pulse pressure recovery was improved in AC compared with C animals before, but not after, absolute sodium iodoacetate-induced glycolysis inhibition. Acclimated-euthyroid hearts exhibited decreased ischemic tolerance, whereas induced hypothyroidism in C improved cardiotolerance. Thus higher preischemic glycogen and slowed glycolysis are associated with hypothyroidism and are likely important mediators of the improved ischemic tolerance exhibited by AC hearts.


Assuntos
Aclimatação/fisiologia , Glicogênio/metabolismo , Glicólise/fisiologia , Isquemia Miocárdica/metabolismo , Tiroxina/sangue , Animais , Isótopos de Carbono , Glucose/farmacocinética , Temperatura Alta , Hipotireoidismo/metabolismo , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Resistência Física/fisiologia , Ratos
17.
PLoS One ; 8(2): e57149, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468922

RESUMO

The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV). We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX), upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging.


Assuntos
Células Epiteliais/metabolismo , Resposta ao Choque Térmico , Canais de Cátion TRPV/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Humanos , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Canais de Cátion TRPV/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
PLoS One ; 6(11): e26956, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22132083

RESUMO

The Acute respiratory distress syndrome (ARDS) is a highly lethal inflammatory lung disorder. Apoptosis plays a key role in its pathogenesis. We showed that an adenovirus expressing the 70 kDa heat shock protein Hsp70 (AdHSP) protected against sepsis-induced lung injury. In this study we tested the hypothesis that AdHSP attenuates apoptosis in sepsis-induced lung injury. Sepsis was induced in rats via cecal ligation and double puncture (2CLP). At the time of 2CLP PBS, AdHSP or AdGFP (an adenoviral vector expressing green fluorescent protein) were injected into the tracheas of septic rats. 48 hours later, lungs were isolated. One lung was fixed for TUNEL staining and immunohistochemistry. The other was homogenized to isolate cytosolic and nuclear protein. Immunoblotting, gel filtration and co-immunoprecipitation were performed in these extracts. In separate experiments MLE-12 cells were incubated with medium, AdHSP or AdGFP. Cells were stimulated with TNFα. Cytosolic and nuclear proteins were isolated. These were subjected to immunoblotting, co-immunoprecipitation and a caspase-3 activity assay. TUNEL assay demonstrated that AdHSP reduced alveolar cell apoptosis. This was confirmed by immunohistochemical detection of caspase 3 abundance. In lung isolated from septic animals, immunoblotting, co-immunoprecipitation and gel filtration studies revealed an increase in cytoplasmic complexes containing caspases 3, 8 and 9. AdHSP disrupted these complexes. We propose that Hsp70 impairs apoptotic cellular pathways via interactions with caspases. Disruption of large complexes resulted in stabilization of lower molecular weight complexes, thereby, reducing nuclear caspase-3. Prevention of apoptosis in lung injury may preserve alveolar cells and aid in recovery.


Assuntos
Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Apoptose , Proteínas de Choque Térmico HSP70/metabolismo , Transdução de Sinais , Lesão Pulmonar Aguda/enzimologia , Adenoviridae/genética , Animais , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Ceco/patologia , Núcleo Celular/enzimologia , Ativação Enzimática , Estabilidade Enzimática , Humanos , Ligadura , Masculino , Camundongos , Peroxidase/metabolismo , Ligação Proteica , Transporte Proteico , Punções , Ratos , Ratos Sprague-Dawley
19.
Crit Care Med ; 35(9): 2128-38, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17855826

RESUMO

OBJECTIVES: Acute respiratory distress syndrome is a common and highly lethal inflammatory lung syndrome. We previously have shown that an adenoviral vector expressing the heat shock protein (Hsp)70 (AdHSP) protects against experimental sepsis-induced acute respiratory distress syndrome in part by limiting neutrophil accumulation in the lung. Neutrophil accumulation and activation is modulated, in part, by the nuclear factor-kappaB (NF-kappaB) signal transduction pathway. NF-kappaB activation requires dissociation/degradation of a bound inhibitor, IkappaBalpha. IkappaBalpha degradation requires phosphorylation by IkappaB kinase, ubiquitination by the SCFbeta-TrCP (Skp1/Cullin1/Fbox beta-transducing repeat-containing protein) ubiquitin ligase, and degradation by the 26S proteasome. We tested the hypothesis that Hsp70 attenuates NF-kappaB activation at multiple points in the IkappaBalpha degradative pathway. DESIGN: Laboratory investigation. SETTING: University medical center research laboratory. SUBJECTS: Adolescent (200 g) Sprague-Dawley rats and murine lung epithelial-12 cells in culture. INTERVENTIONS: Lung injury was induced in rats via cecal ligation and double puncture. Thereafter, animals were treated with intratracheal injection of 1) phosphate buffer saline, 2) AdHSP, or 3) an adenovirus expressing green fluorescent protein. Murine lung epithelial-12 cells were stimulated with tumor necrosis factor-alpha and transfected. NF-kappaB was examined using molecular biological tools. MEASUREMENTS AND MAIN RESULTS: Intratracheal administration of AdHSP to rats with cecal ligation and double puncture limited nuclear translocation of NF-kappaB and attenuated phosphorylation of IkappaBalpha. AdHSP treatment reduced, but did not eliminate, phosphorylation of the beta-subunit of IkappaB kinase. In vitro kinase activity assays and gel filtration chromatography revealed that treatment of sepsis-induced lung injury with AdHSP induced fragmentation of the IkappaB kinase signalosome. This stabilized intermediary complexes containing IkappaB kinase components, IkappaBalpha, and NF-kappaB. Cellular studies indicate that although ubiquitination of IkappaBalpha was maintained, proteasomal degradation was impaired by an indirect mechanism. CONCLUSIONS: Treatment of sepsis-induced lung injury with AdHSP limits NF-kappaB activation. This results from stabilization of intermediary NF-kappaB/IkappaBalpha/IkappaB kinase complexes in a way that impairs proteasomal degradation of IkappaBalpha. This novel mechanism by which Hsp70 attenuates an intracellular process may be of therapeutic value.


Assuntos
Proteínas de Choque Térmico HSP70/fisiologia , Quinase I-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Animais , Células Cultivadas , Proteínas de Choque Térmico HSP70/análise , Proteínas I-kappa B/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA