Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
RNA ; 29(7): 1033-1050, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37019633

RESUMO

The RNA interference (RNAi) pathway has evolved numerous functionalities in eukaryotes, with many on display in Kingdom Fungi. RNAi can regulate gene expression, facilitate drug resistance, or even be altogether lost to improve growth potential in some fungal pathogens. In the WHO fungal priority pathogen, Aspergillus fumigatus, the RNAi system is known to be intact and functional. To extend our limited understanding of A. fumigatus RNAi, we first investigated the genetic variation in RNAi-associated genes in a collection of 217 environmental and 83 clinical genomes, where we found that RNAi components are conserved even in clinical strains. Using endogenously expressed inverted-repeat transgenes complementary to a conditionally essential gene (pabA) or a nonessential gene (pksP), we determined that a subset of the RNAi componentry is active in inverted-repeat transgene silencing in conidia and mycelium. Analysis of mRNA-seq data from RNAi double-knockout strains linked the A. fumigatus dicer-like enzymes (DclA/B) and RNA-dependent RNA polymerases (RrpA/B) to regulation of conidial ribosome biogenesis genes; however, surprisingly few endogenous small RNAs were identified in conidia that could explain this broad change. Although RNAi was not clearly linked to growth or stress response defects in the RNAi knockouts, serial passaging of RNAi knockout strains for six generations resulted in lineages with diminished spore production over time, indicating that loss of RNAi can exert a fitness cost on the fungus. Cumulatively, A. fumigatus RNAi appears to play an active role in defense against double-stranded RNA species alongside a previously unappreciated housekeeping function in regulation of conidial ribosomal biogenesis genes.


Assuntos
Aspergillus fumigatus , Transcriptoma , Aspergillus fumigatus/genética , Interferência de RNA , Esporos Fúngicos/genética , RNA de Cadeia Dupla
2.
PLoS Pathog ; 17(3): e1009235, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33780518

RESUMO

To gain a better understanding of the transcriptional response of Aspergillus fumigatus during invasive pulmonary infection, we used a NanoString nCounter to assess the transcript levels of 467 A. fumigatus genes during growth in the lungs of immunosuppressed mice. These genes included ones known to respond to diverse environmental conditions and those encoding most transcription factors in the A. fumigatus genome. We found that invasive growth in vivo induces a unique transcriptional profile as the organism responds to nutrient limitation and attack by host phagocytes. This in vivo transcriptional response is largely mimicked by in vitro growth in Aspergillus minimal medium that is deficient in nitrogen, iron, and/or zinc. From the transcriptional profiling data, we selected 9 transcription factor genes that were either highly expressed or strongly up-regulated during in vivo growth. Deletion mutants were constructed for each of these genes and assessed for virulence in mice. Two transcription factor genes were found to be required for maximal virulence. One was rlmA, which is required for the organism to achieve maximal fungal burden in the lung. The other was sltA, which regulates of the expression of multiple secondary metabolite gene clusters and mycotoxin genes independently of laeA. Using deletion and overexpression mutants, we determined that the attenuated virulence of the ΔsltA mutant is due in part to decreased expression aspf1, which specifies a ribotoxin, but is not mediated by reduced expression of the fumigaclavine gene cluster or the fumagillin-pseruotin supercluster. Thus, in vivo transcriptional profiling focused on transcription factors genes provides a facile approach to identifying novel virulence regulators.


Assuntos
Aspergillus fumigatus/genética , Regulação Fúngica da Expressão Gênica/genética , Pulmão/virologia , Fatores de Transcrição/metabolismo , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica/métodos , Ferro/metabolismo , Pulmão/metabolismo , Camundongos , Virulência/genética
3.
Nucleic Acids Res ; 48(7): 3567-3590, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32086516

RESUMO

To sustain iron homeostasis, microorganisms have evolved fine-tuned mechanisms for uptake, storage and detoxification of the essential metal iron. In the human pathogen Aspergillus fumigatus, the fungal-specific bZIP-type transcription factor HapX coordinates adaption to both iron starvation and iron excess and is thereby crucial for virulence. Previous studies indicated that a HapX homodimer interacts with the CCAAT-binding complex (CBC) to cooperatively bind bipartite DNA motifs; however, the mode of HapX-DNA recognition had not been resolved. Here, combination of in vivo (genetics and ChIP-seq), in vitro (surface plasmon resonance) and phylogenetic analyses identified an astonishing plasticity of CBC:HapX:DNA interaction. DNA motifs recognized by the CBC:HapX protein complex comprise a bipartite DNA binding site 5'-CSAATN12RWT-3' and an additional 5'-TKAN-3' motif positioned 11-23 bp downstream of the CCAAT motif, i.e. occasionally overlapping the 3'-end of the bipartite binding site. Phylogenetic comparison taking advantage of 20 resolved Aspergillus species genomes revealed that DNA recognition by the CBC:HapX complex shows promoter-specific cross-species conservation rather than regulon-specific conservation. Moreover, we show that CBC:HapX interaction is absolutely required for all known functions of HapX. The plasticity of the CBC:HapX:DNA interaction permits fine tuning of CBC:HapX binding specificities that could support adaptation of pathogens to their host niches.


Assuntos
Aspergillus fumigatus/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fator de Ligação a CCAAT/metabolismo , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Regiões Promotoras Genéticas , Sequência Rica em At , Aspergillus fumigatus/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/química , Sítios de Ligação , DNA Fúngico/química , DNA Fúngico/metabolismo , Evolução Molecular , Proteínas Fúngicas/química , Mutação , Motivos de Nucleotídeos , Ligação Proteica , Domínios Proteicos , Regulon , Sideróforos/metabolismo , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
4.
Angew Chem Int Ed Engl ; 61(17): e202117218, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35075763

RESUMO

Fungal infections caused by Candida species are among the most prevalent in hospitalized patients. However, current methods for the detection of Candida fungal cells in clinical samples rely on time-consuming assays that hamper rapid and reliable diagnosis. Herein, we describe the rational development of new Phe-BODIPY amino acids as small fluorogenic building blocks and their application to generate fluorescent antimicrobial peptides for rapid labelling of Candida cells in urine. We have used computational methods to analyse the fluorogenic behaviour of BODIPY-substituted aromatic amino acids and performed bioactivity and confocal microscopy experiments in different strains to confirm the utility and versatility of peptides incorporating Phe-BODIPYs. Finally, we have designed a simple and sensitive fluorescence-based assay for the detection of Candida albicans in human urine samples.


Assuntos
Candidíase , Sistema Urinário , Aminoácidos , Compostos de Boro , Candida , Candidíase/diagnóstico , Humanos , Peptídeos/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-33431412

RESUMO

The emergence of azole-resistant fungal pathogens has posed a great threat to public health worldwide. Although the molecular mechanism of azole resistance has been extensively investigated, the potential regulators of azole resistance remain largely unexplored. In this study, we identified a new function of the fungal specific C2H2 zinc finger transcription factor SltA (involved in the salt tolerance pathway) in the regulation of azole resistance of the human fungal pathogen Aspergillus fumigatus A lack of SltA results in an itraconazole hypersusceptibility phenotype. Transcriptional profiling combined with LacZ reporter analysis and electrophoretic mobility shift assays (EMSA) demonstrated that SltA is involved in its own transcriptional regulation and also regulates the expression of genes related to ergosterol biosynthesis (erg11A, erg13A, and erg24A) and drug efflux pumps (mdr1, mfsC, and abcE) by directly binding to the conserved 5'-AGGCA-3' motif in their promoter regions, and this binding is dependent on the conserved cysteine and histidine within the C2H2 DNA binding domain of SltA. Moreover, overexpression of erg11A or mdr1 rescues sltA deletion defects under itraconazole conditions, suggesting that erg11A and mdr1 are related to sltA-mediated itraconazole resistance. Most importantly, deletion of SltA in laboratory-derived and clinical azole-resistant isolates significantly attenuates drug resistance. Collectively, we have identified a new function of the transcription factor SltA in regulating azole resistance by coordinately mediating the key azole target Erg11A and the drug efflux pump Mdr1, and targeting SltA may provide a potential strategy for intervention of clinical azole-resistant isolates to improve the efficiency of currently approved antifungal drugs.


Assuntos
Aspergillus fumigatus , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Azóis/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Humanos , Testes de Sensibilidade Microbiana , Fatores de Transcrição/genética
6.
Med Mycol ; 59(1): 7-13, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32944768

RESUMO

The origin of isolates routinely used by the community of Aspergillus fumigatus researchers is periodically a matter of intense discussion at our centre, as the construction of recombinant isolates have sometimes followed convoluted routes, the documentation describing their lineages is fragmented, and the nomenclature is confusing. As an aide memoir, not least for our own benefit, we submit the following account and tabulated list of strains (Table 1) in an effort to collate all of the relevant information in a single, easily accessible document. To maximise the accuracy of this record we have consulted widely amongst the community of Medical Mycologists using these strains. All the strains described are currently available from one of these organisations, namely the Fungal Genetics Stock Centre (FGSC), FungiDB, Ensembl Fungi and The National Collection of Pathogenic Fungi (NCPF) at Public Health England. Display items from this manuscript are also featured on FungiDB. LAY ABSTRACT: We present a concise overview on the definition, origin and unique genetic makeup of the Aspergillus fumigatus isolates routinely in use by the fungal research community, to aid researchers to describe past and new strains and the experimental differences observed more accurately.


Assuntos
Aspergillus fumigatus/classificação , Aspergillus fumigatus/genética , Evolução Biológica , Genótipo , Filogenia , Variação Genética , Humanos
7.
Fungal Genet Biol ; 145: 103479, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33122116

RESUMO

Aspergillus fumigatus is a saprophytic fungal pathogen that is the cause of more than 300,000 life-threatening infections annually. Our understanding of pathogenesis and factors contributing to disease progression are limited. Development of rapid and versatile gene editing methodologies for A. fumigatus is essential. CRISPR-Cas9 mediated transformation has been widely used as a novel genome editing tool and has been used for a variety of editing techniques, such as protein tagging, gene deletions and site-directed mutagenesis in A. fumigatus. However, successful genome editing relies on time consuming, multi-step cloning procedures paired with the use of selection markers, which can result in a metabolic burden for the host and/or unintended transcriptional modifications at the site of integration. We have used an in vitro CRISPR-Cas9 assembly methodology to perform selection-free genome editing, including epitope tagging of proteins and site-directed mutagenesis. The repair template used during this transformation use 50 bp micro-homology arms and can be generated with a single PCR reaction or by purchasing synthesised single stranded oligonucleotides, decreasing the time required for complex construct synthesis.


Assuntos
Aspergillus fumigatus/genética , Epitopos/genética , Mutagênese Sítio-Dirigida , Micoses/genética , Aspergillus fumigatus/patogenicidade , Sistemas CRISPR-Cas/genética , Proteínas Fúngicas/genética , Edição de Genes/tendências , Humanos , Micoses/microbiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-30397071

RESUMO

Antifungal agents directed against novel therapeutic targets are required for treating invasive, chronic, and allergic Aspergillus infections. Competitive fitness profiling technologies have been used in a number of bacterial and yeast systems to identify druggable targets; however, the development of similar systems in filamentous fungi is complicated by the fact that they undergo cell fusion and heterokaryosis. Here, we demonstrate that cell fusion in Aspergillus fumigatus under standard culture conditions is not predominately constitutive, as with most ascomycetes, but can be induced by a range of extracellular stressors. Using this knowledge, we have developed a barcode-free genetic profiling system that permits high-throughput parallel determination of strain fitness in a collection of diploid A. fumigatus mutants. We show that heterozygous cyp51A and arf2 null mutants have reduced fitness in the presence of itraconazole and brefeldin A, respectively, and a heterozygous atp17 null mutant is resistant to brefeldin A.


Assuntos
Antifúngicos/uso terapêutico , Aspergillus fumigatus/efeitos dos fármacos , Brefeldina A/uso terapêutico , Fusão Celular/métodos , Farmacorresistência Fúngica Múltipla/genética , Itraconazol/uso terapêutico , Fatores de Ribosilação do ADP/genética , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/genética , Aspergillus fumigatus/fisiologia , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Técnicas de Inativação de Genes , Humanos , Testes de Sensibilidade Microbiana , ATPases Mitocondriais Próton-Translocadoras/genética
9.
PLoS Pathog ; 13(4): e1006340, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28423062

RESUMO

Aspergillus fumigatus is responsible for a disproportionate number of invasive mycosis cases relative to other common filamentous fungi. While many fungal factors critical for infection establishment are known, genes essential for disease persistence and progression are ill defined. We propose that fungal factors that promote navigation of the rapidly changing nutrient and structural landscape characteristic of disease progression represent untapped clinically relevant therapeutic targets. To this end, we find that A. fumigatus requires a carbon catabolite repression (CCR) mediated genetic network to support in vivo fungal fitness and disease progression. While CCR as mediated by the transcriptional repressor CreA is not required for pulmonary infection establishment, loss of CCR inhibits fungal metabolic plasticity and the ability to thrive in the dynamic infection microenvironment. Our results suggest a model whereby CCR in an environmental filamentous fungus is dispensable for initiation of pulmonary infection but essential for infection maintenance and disease progression. Conceptually, we argue these data provide a foundation for additional studies on fungal factors required to support fungal fitness and disease progression and term such genes and factors, DPFs (disease progression factors).


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/genética , Carbono/metabolismo , Repressão Catabólica , Proteínas Fúngicas/metabolismo , Redes Reguladoras de Genes , Aspergilose/patologia , Aspergillus fumigatus/fisiologia , Progressão da Doença , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Estresse Fisiológico
10.
Proc Natl Acad Sci U S A ; 113(45): 12809-12814, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791100

RESUMO

There is an important medical need for new antifungal agents with novel mechanisms of action to treat the increasing number of patients with life-threatening systemic fungal disease and to overcome the growing problem of resistance to current therapies. F901318, the leading representative of a novel class of drug, the orotomides, is an antifungal drug in clinical development that demonstrates excellent potency against a broad range of dimorphic and filamentous fungi. In vitro susceptibility testing of F901318 against more than 100 strains from the four main pathogenic Aspergillus spp. revealed minimal inhibitory concentrations of ≤0.06 µg/mL-greater potency than the leading antifungal classes. An investigation into the mechanism of action of F901318 found that it acts via inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) in a fungal-specific manner. Homology modeling of Aspergillus fumigatus DHODH has identified a predicted binding mode of the inhibitor and important interacting amino acid residues. In a murine pulmonary model of aspergillosis, F901318 displays in vivo efficacy against a strain of A. fumigatus sensitive to the azole class of antifungals and a strain displaying an azole-resistant phenotype. F901318 is currently in late Phase 1 clinical trials, offering hope that the antifungal armamentarium can be expanded to include a class of agent with a mechanism of action distinct from currently marketed antifungals.

11.
Int J Mol Sci ; 20(18)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546755

RESUMO

Fungal diseases are a serious health burden worldwide with drug resistance compromising efficacy of the limited arsenal of antifungals available. New drugs with novel mechanisms of action are desperately needed to overcome current challenges. The screening of the Aspergillus fumigatus genome identified 35 phosphatases, four of which were previously reported as essential for viability. In addition, we validated another three essential phosphatases. Phosphatases control critical events in fungi from cell wall integrity to cell cycle, thus they are attractive targets for drug development. We used VSpipe v1.0, a virtual screening pipeline, to evaluate the druggability of the seven essential phosphatases and identify starting points for drug discovery. Targeted virtual screening and evaluation of the ligand efficiency plots created by VSpipe, enabled us to define the most favourable chemical space for drug development and suggested different modes of inhibition for each phosphatase. Interestingly, the identified ligand binding sites match with functional sites (active site and protein interaction sites) reported for other yeast and human homologues. Thus, the VSpipe virtual screening approach identified both druggable and functional sites in these essential phosphatases for further experimental validation and antifungal drug development.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/genética , Genoma Fúngico , Monoéster Fosfórico Hidrolases/genética , Análise de Sequência de DNA , Software , Aspergillus fumigatus/genética , Ciclo Celular/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-29610197

RESUMO

The antifungal drug 5-flucytosine (5FC), a derivative of the nucleobase cytosine, is licensed for the treatment of fungal diseases; however, it is rarely used as a monotherapeutic to treat Aspergillus infection. Despite being potent against other fungal pathogens, 5FC has limited activity against Aspergillus fumigatus when standard in vitro assays are used to determine susceptibility. However, in modified in vitro assays where the pH is set to pH 5, the activity of 5FC increases significantly. Here we provide evidence that fcyB, a gene that encodes a purine-cytosine permease orthologous to known 5FC importers, is downregulated at pH 7 and is the primary factor responsible for the low efficacy of 5FC at pH 7. We also uncover two transcriptional regulators that are responsible for the repression of fcyB and, consequently, mediators of 5FC resistance, the CCAAT binding complex (CBC) and the pH regulatory protein PacC. We propose that the activity of 5FC might be enhanced by the perturbation of factors that repress fcyB expression, such as PacC or other components of the pH-sensing machinery.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Flucitosina/farmacologia , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Aspergillus fumigatus/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Fatores de Transcrição/genética
14.
PLoS Pathog ; 12(7): e1005775, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27438727

RESUMO

Azole drugs selectively target fungal sterol biosynthesis and are critical to our antifungal therapeutic arsenal. However, resistance to this class of drugs, particularly in the major human mould pathogen Aspergillus fumigatus, is emerging and reaching levels that have prompted some to suggest that there is a realistic probability that they will be lost for clinical use. The dominating class of pan-azole resistant isolates is characterized by the presence of a tandem repeat of at least 34 bases (TR34) within the promoter of cyp51A, the gene encoding the azole drug target sterol C14-demethylase. Here we demonstrate that the repeat sequence in TR34 is bound by both the sterol regulatory element binding protein (SREBP) SrbA, and the CCAAT binding complex (CBC). We show that the CBC acts complementary to SrbA as a negative regulator of ergosterol biosynthesis and show that lack of CBC activity results in increased sterol levels via transcriptional derepression of multiple ergosterol biosynthetic genes including those coding for HMG-CoA-synthase, HMG-CoA-reductase and sterol C14-demethylase. In agreement with these findings, inactivation of the CBC increased tolerance to different classes of drugs targeting ergosterol biosynthesis including the azoles, allylamines (terbinafine) and statins (simvastatin). We reveal that a clinically relevant mutation in HapE (P88L) significantly impairs the binding affinity of the CBC to its target site. We identify that the mechanism underpinning TR34 driven overexpression of cyp51A results from duplication of SrbA but not CBC binding sites and show that deletion of the 34 mer results in lack of cyp51A expression and increased azole susceptibility similar to a cyp51A null mutant. Finally we show that strains lacking a functional CBC are severely attenuated for pathogenicity in a pulmonary and systemic model of aspergillosis.


Assuntos
Aspergilose/metabolismo , Aspergillus fumigatus/metabolismo , Fator de Ligação a CCAAT/metabolismo , Farmacorresistência Fúngica/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Antifúngicos , Azóis , Imunoprecipitação da Cromatina , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Proteínas Fúngicas/metabolismo , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Esteróis/biossíntese
15.
Analyst ; 143(17): 4155-4162, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30069568

RESUMO

Pulmonary aspergillosis can cause serious complications in people with a suppressed immune system. Volatile metabolites emitted by Aspergillus spp. have shown promise for early detection of pathogenicity. However, volatile profiles require further research, as effective headspace analysis methods are required for extended chemical coverage of the volatome; in terms of both very volatile and semi-volatile compounds. In this study, we describe a novel adaptable sampling method in which fungal headspace samples can be sampled continuously throughout a defined time period using both active (pumped) and passive (diffusive) methods, with the capability for samples to be stored for later off-line analysis. For this method we utilise thermal desorption-gas chromatography-mass spectrometry to generate volatile metabolic profiles using Aspergillus fumigatus as the model organism. Several known fungal-specific volatiles associated with secondary metabolite biosynthesis (including α-pinene, camphene, limonene, and several sesquiterpenes) were identified. A comparison between the wild-type A. fumigatus with a phosphopantetheinyl transferase null mutant strain (ΔpptA) that is compromised in secondary metabolite synthesis, revealed reduced production of sesquiterpenes. We also showed the lack of terpene compounds production during the early growth phase, whilst pyrazines were identified in both early and late growth phases. We have demonstrated that the fungal volatome is dynamic and it is therefore critically necessary to sample the headspace across several time periods using a combination of active and passive sampling techniques to analyse and understand this dynamism.


Assuntos
Aspergillus fumigatus/metabolismo , Metabolômica/métodos , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas
17.
J Infect Dis ; 211(4): 651-60, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25193981

RESUMO

BACKGROUND: Aspergillus fumigatus causes chronic cavitary pulmonary aspergillosis (CCPA) and allergic bronchopulmonary aspergillosis (ABPA) in overtly immunocompetent and atopic individuals, respectively. Disease mechanisms are poorly understood but may be related to increased neutrophil presence and activation. Pro-platelet basic protein (PPBP) is a potent neutrophil chemoattractant and activator whose expression is repressed by interleukin 10 (IL-10). METHODS: PPBP expression by monocyte-derived macrophages from patients with ABPA or CCPA and asthmatic and healthy controls (10 individuals per group) was analyzed using reverse-transcription polymerase chain reaction. PPBP and IL-10 protein levels in cell culture supernatants were measured by enzyme-linked immunosorbent assay. Two PPBP single-nucleotide polymorphisms (SNPs) were genotyped in 638 individuals. The gene was resequenced in 20 individuals. RESULTS: PPBP expression and protein levels were significantly increased in the ABPA (19.7-fold) and CCPA (27.7-fold) groups, compared with the control groups. PPBP SNPs were not associated with disease. IL-10 protein levels were significantly lower in the ABPA and CCPA groups, compared with the healthy group, suggesting that differences in PPBP levels may result from regulatory mechanisms. CONCLUSIONS: The results suggest a role for increased PPBP expression in ABPA and CCPA. Repression of PPBP expression may benefit some patients. Increased PPBP expression in ABPA and CCPA may be useful as a future diagnostic tool or possible target for novel therapeutics.


Assuntos
Aspergilose Broncopulmonar Alérgica/imunologia , Aspergilose Broncopulmonar Alérgica/metabolismo , Aspergilose/imunologia , Aspergilose/metabolismo , Macrófagos/metabolismo , beta-Tromboglobulina/análise , Aspergilose/epidemiologia , Aspergilose Broncopulmonar Alérgica/epidemiologia , Aspergillus fumigatus/imunologia , Estudos de Casos e Controles , Células Cultivadas , Doença Crônica , Humanos , Interleucina-10/análise , Interleucina-10/metabolismo , Polimorfismo de Nucleotídeo Único , beta-Tromboglobulina/genética , beta-Tromboglobulina/metabolismo
19.
J Fungi (Basel) ; 10(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38786682

RESUMO

The mold Aspergillus fumigatus employs two high-affinity uptake systems, reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA), for the acquisition of the essential trace element iron. SIA has previously been shown to be crucial for virulence in mammalian hosts. Here, we show that a lack of AcuK or AcuM, transcription factors required for the activation of gluconeogenesis, decreases the production of both extra- and intracellular siderophores in A. fumigatus. The lack of AcuM or AcuK did not affect the expression of genes involved in RIA and SIA, suggesting that these regulators do not directly regulate iron homeostasis genes, but indirectly affect siderophore production through their influence on metabolism. Consistent with this, acetate supplementation reversed the intracellular siderophore production defect of ΔacuM and ΔacuK. Moreover, ΔacuM and ΔacuK displayed a similar growth defect under iron limitation and iron sufficiency, which suggests they have a general role in carbon metabolism apart from gluconeogenesis. In agreement with a potential role of the glyoxylate cycle in adaptation to iron starvation, transcript levels of the malate synthase-encoding acuE were found to be upregulated by iron limitation that is partially dependent on AcuK and AcuM. Together, these data demonstrate the influence of iron availability on carbon metabolism.

20.
Nat Microbiol ; 9(1): 29-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151646

RESUMO

Widespread use of azole antifungals in agriculture has been linked to resistance in the pathogenic fungus Aspergillus fumigatus. We show that exposure of A. fumigatus to the agrochemical fungicide, ipflufenoquin, in vitro can select for strains that are resistant to olorofim, a first-in-class clinical antifungal with the same mechanism of action. Resistance is caused by non-synonymous mutations within the target of ipflufenoquin/olorofim activity, dihydroorotate dehydrogenase (DHODH), and these variants have no overt growth defects.


Assuntos
Aspergillus fumigatus , Fungicidas Industriais , Aspergillus fumigatus/genética , Fungicidas Industriais/farmacologia , Agroquímicos , Pirróis/farmacologia , Antifúngicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA