Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563257

RESUMO

Recently, a paradigm shift has been established for oncolytic viruses (OVs) as it was shown that the immune system plays an important role in the specific killing of tumor cells by OVs. OVs have the intrinsic capacity to provide the right signals to trigger anti-tumor immune responses, on the one hand by delivering virus-derived innate signals and on the other hand by inducing immunogenic cell death (ICD), which is accompanied by the release of various damage-associated molecules from infected tumor cells. Here, we determined the ICD-inducing capacity of Talimogene laherparepvec (T-VEC), a herpes simplex virus type 1 based OV, and benchmarked this to other previously described ICD (e.g., doxorubicin) and non-ICD inducing agents (cisplatin). Furthermore, we studied the capability of T-VEC to induce the maturation of human BDCA-1+ myeloid dendritic cells (myDCs). We found that T-VEC treatment exerts direct and indirect anti-tumor effects as it induces tumor cell death that coincides with the release of hallmark mediators of ICD, while simultaneously contributing to the maturation of BDCA-1+ myDCs. These results unequivocally cement OVs in the category of cancer immunotherapy.


Assuntos
Herpesvirus Humano 1 , Melanoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Células Dendríticas/patologia , Humanos , Morte Celular Imunogênica , Imunoterapia/métodos , Melanoma/patologia , Terapia Viral Oncolítica/métodos
2.
Eur J Immunol ; 45(12): 3351-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26377033

RESUMO

In situ modification of antigen-presenting cells garnered interest in cancer immunotherapy. Therefore, we developed APC-targeted lentiviral vectors (LVs). Unexpectedly, these LVs were inferior vaccines to broad tropism LVs. Since IL-12 is a potent mediator of antitumor immunity, we evaluated whether this proinflammatory cytokine could enhance antitumor immunity of an APC-targeted LV-based vaccine. Therefore, we compared subcutaneous administration of broad tropism LVs (VSV-G-LV) with APC-targeted LVs (DC2.1-LV)-encoding enhanced GFP and ovalbumin, or IL-12 and ovalbumin in mice. We show that codelivery of IL-12 by VSV-G-LVs or DC2.1-LVs augments CD4(+) or CD8(+) T-cell proliferation, respectively. Furthermore, we demonstrate that codelivery of IL-12 enhances the CD4(+) TH 1 profile irrespective of its delivery mode, while an increase in cytotoxic and therapeutic CD8(+) T cells was only induced upon VSV-G-LV injection. While codelivery of IL-12 by DC2.1-LVs did not enhance CD8(+) T-cell performance, it increased expression of inhibitory checkpoint markers Lag3, Tim3, and PD-1. Finally, the discrepancy between CD4(+) T-cell stimulation with and without functional CD8(+) T-cell stimulation by VSV-G- and DC2.1-LVs is partly explained by the observation that IL-12 relieves CD8(+) T cells from CD4(+) T-cell help, implying that a T(H)1 profile is of minor importance for antitumor immunotherapy if IL-12 is exogenously delivered.


Assuntos
Interleucina-12/genética , Lentivirus/genética , Transdução Genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Células HEK293 , Humanos , Ativação Linfocitária , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Envelope Viral/genética
3.
Theranostics ; 13(15): 5483-5500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908728

RESUMO

Rationale: Although promising responses are obtained in patients treated with immune checkpoint inhibitors targeting programmed death ligand 1 (PD-L1) and its receptor programmed death-1 (PD-1), only a fraction of patients benefits from this immunotherapy. Cancer vaccination may be an effective approach to improve the response to immune checkpoint inhibitors anti-PD-L1/PD-1 therapy. However, there is a lack of research on the dynamics of PD-L1 expression in response to cancer vaccination. Methods: We performed non-invasive whole-body imaging to visualize PD-L1 expression at different timepoints after vaccination of melanoma-bearing mice. Mice bearing ovalbumin (OVA) expressing B16 tumors were i.v. injected with the Galsome mRNA vaccine: OVA encoding mRNA lipoplexes co-encapsulating a low or a high dose of the atypical adjuvant α-galactosylceramide (αGC) to activate invariant natural killer T (iNKT) cells. Serial non-invasive whole-body immune imaging was performed using a technetium-99m (99mTc)-labeled anti-PD-L1 nanobody, single-photon emission computerized tomography (SPECT) and X-ray computed tomography (CT) images were quantified. Additionally, cellular expression of PD-L1 was evaluated with flow cytometry. Results: SPECT/CT-imaging showed a rapid and systemic upregulation of PD-L1 after vaccination. PD-L1 expression could not be correlated to the αGC-dose, although we observed a dose-dependent iNKT cell activation. Dynamics of PD-L1 expression were organ-dependent and most pronounced in lungs and liver, organs to which the vaccine was distributed. PD-L1 expression in lungs increased immediately after vaccination and gradually decreased over time, whereas in liver, vaccination-induced PD-L1 upregulation was short-lived. Flow cytometric analysis of these organs further showed myeloid cells as well as non-immune cells with elevated PD-L1 expression in response to vaccination. SPECT/CT imaging of the tumor demonstrated that the expression of PD-L1 remained stable over time and was overall not affected by vaccination although flow cytometric analysis at the cellular level demonstrated changes in PD-L1 expression in various immune cell populations following vaccination. Conclusion: Repeated non-invasive whole-body imaging using 99mTc-labeled anti-PD-L1 nanobodies allows to document the dynamic nature of PD-L1 expression upon vaccination. Galsome vaccination rapidly induced systemic upregulation of PD-L1 expression with the most pronounced upregulation in lungs and liver while flow cytometry analysis showed upregulation of PD-L1 in the tumor microenvironment. This study shows that imaging using nanobodies may be useful for monitoring vaccine-mediated PD-L1 modulation in patients and could provide a rationale for combination therapy. To the best of our knowledge, this is the first report that visualizes PD-L1 expression upon cancer vaccination.


Assuntos
Melanoma , Células T Matadoras Naturais , Anticorpos de Domínio Único , Humanos , Camundongos , Animais , Antígeno B7-H1 , Células T Matadoras Naturais/metabolismo , Anticorpos de Domínio Único/metabolismo , Inibidores de Checkpoint Imunológico/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Vacinas Sintéticas , Melanoma/diagnóstico por imagem , Melanoma/terapia , Microambiente Tumoral , Vacinas de mRNA
4.
Mol Ther Methods Clin Dev ; 22: 172-182, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34485603

RESUMO

Monoclonal antibodies that target the inhibitory immune checkpoint axis consisting of programmed cell death protein 1 (PD-1) and its ligand, PD-L1, have changed the immune-oncology field. We identified K2, an anti-human PD-L1 single-domain antibody fragment, that can enhance T cell activation and tumor cell killing. In this study, the potential of different K2 formats as immune checkpoint blocking medicines was evaluated using a gene-based delivery approach. We showed that 2K2 and 3K2, a bivalent and trivalent K2 format generated using a 12 GS (glycine-serine) linker, were 313- and 135-fold more potent in enhancing T cell receptor (TCR) signaling in PD-1POS cells than was monovalent K2. We further showed that bivalent constructs generated using a 30 GS linker or disulfide bond were 169- and 35-fold less potent in enhancing TCR signaling than was 2K2. 2K2 enhanced tumor cell killing in a 3D melanoma model, albeit to a lesser extent than avelumab. Therefore, an immunoglobulin (Ig)G1 antibody-like fusion protein was generated, referred to as K2-Fc. K2-Fc was significantly better than avelumab in enhancing tumor cell killing in the 3D melanoma model. Overall, this study describes K2-based immune checkpoint medicines, and it highlights the benefit of an IgG1 Fc fusion to K2 that gains bivalency, effector functions, and efficacy.

5.
Biomolecules ; 10(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003481

RESUMO

Immune checkpoints, such as programmed death-ligand 1 (PD-L1), limit T-cell function and tumor cells use this ligand to escape the anti-tumor immune response. Treatments with monoclonal antibodies blocking these checkpoints have shown long-lasting responses, but only in a subset of patients. This study aims to develop a Nanobody (Nb)-based probe in order to assess human PD-L1 (hPD-L1) expression using positron emission tomography imaging, and to compare the influence of two different radiolabeling strategies, since the Nb has a lysine in its complementarity determining region (CDR), which may impact its affinity upon functionalization. The Nb has been conjugated with the NOTA chelator site-specifically via the Sortase-A enzyme or randomly on its lysines. [68Ga]Ga-NOTA-(hPD-L1) Nbs were obtained in >95% radiochemical purity. In vivo tumor targeting studies at 1 h 20 post-injection revealed specific tumor uptake of 1.89 ± 0.40%IA/g for the site-specific conjugate, 1.77 ± 0.29%IA/g for the random conjugate, no nonspecific organ targeting, and excretion via the kidneys and bladder. Both strategies allowed for easily obtaining 68Ga-labeled hPD-L1 Nbs in high yields. The two conjugates were stable and showed excellent in vivo targeting. Moreover, we proved that the random lysine-conjugation is a valid strategy for clinical translation of the hPD-L1 Nb, despite the lysine present in the CDR.


Assuntos
Anticorpos Anti-Idiotípicos/imunologia , Antígeno B7-H1/imunologia , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/farmacologia , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo , Neoplasias/imunologia , Neoplasias/patologia , Compostos Radiofarmacêuticos/farmacologia , Distribuição Tecidual/efeitos dos fármacos
6.
Vaccines (Basel) ; 7(3)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394834

RESUMO

Dendritic cell [DC] vaccines can induce durable clinical responses, at least in a fraction of previously treated, late stage cancer patients. Several preclinical studies suggest that shielding programmed death-ligand 1 [PD-L1] on the DC surface may be an attractive strategy to extend such clinical benefits to a larger patient population. In this study, we evaluated the use of single domain antibody [sdAb] K2, a high affinity, antagonistic, PD-L1 specific sdAb, for its ability to enhance DC mediated T-cell activation and benchmarked it against the use of the monoclonal antibodies [mAbs], MIH1, 29E.2A3 and avelumab. Similar to mAbs, sdAb K2 enhanced antigen-specific T-cell receptor signaling in PD-1 positive (PD-1pos) reporter cells activated by DCs. We further showed that the activation and function of antigen-specific CD8 positive (CD8pos) T cells, activated by DCs, was enhanced by inclusion of sdAb K2, but not mAbs. The failure of mAbs to enhance T-cell activation might be explained by their low efficacy to bind PD-L1 on DCs when compared to binding of PD-L1 on non-immune cells, whereas sdAb K2 shows high binding to PD-L1 on immune as well as non-immune cells. These data provide a rationale for the inclusion of sdAb K2 in DC-based immunotherapy strategies.

7.
Cancers (Basel) ; 11(6)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234464

RESUMO

The PD-1:PD-L1 immune checkpoint axis is central in the escape of cancer cells from anticancer immune responses. Monoclonal antibodies (mAbs) specific for PD-L1 have been approved for treatment of various cancer types. Although PD-L1 blockade has proven its merit, there are still several aspects that require further attention to fully capitalize on its potential. One of these is the development of antigen-binding moieties that enable PD-L1 diagnosis and therapy. We generated human PD-L1 binding single domain antibodies (sdAbs) and selected sdAb K2, a sdAb with a high affinity for PD-L1, as a lead compound. SPECT/CT imaging in mice following intravenous injection of Technetium-99m (99mTc)-labeled sdAb K2 revealed high signal-to-noise ratios, strong ability to specifically detect PD-L1 in melanoma and breast tumors, and relatively low kidney retention, which is a unique property for radiolabeled sdAbs. We further showed using surface plasmon resonance that sdAb K2 binds to the same epitope on PD-L1 as the mAb avelumab, and antagonizes PD-1:PD-L1 interactions. Different human cell-based assays corroborated the PD-1:PD-L1 blocking activity, showing enhanced T-cell receptor signaling and tumor cell killing when PD-1POS T cells interacted with PD-L1POS tumor cells. Taken together, we present sdAb K2, which specifically binds to human PD-L1, as a new diagnostic and therapeutic agent in cancer management.

8.
Theranostics ; 8(13): 3559-3570, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026866

RESUMO

Molecular imaging of the immune checkpoint receptor PD-1 and its ligand PD-L1 is increasingly investigated as a strategy to guide and monitor PD-1:PD-L1-targeted immune checkpoint therapy. We provide an overview of the current state-of-the-art on PD-1- and PD-L1-specific imaging agents for quantitative, real-time assessment of PD-1:PD-L1 expression in the tumor environment and discuss their potential for clinical translation.


Assuntos
Antígeno B7-H1/análise , Imagem Molecular/métodos , Neoplasias/diagnóstico , Medicina Nuclear/métodos , Medicina de Precisão/métodos , Receptor de Morte Celular Programada 1/análise , Humanos
9.
Oncotarget ; 9(29): 20476-20489, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29755666

RESUMO

Lenalidomide is a potent anti-myeloma drug with immunomodulatory properties. It is increasingly used in a low-dose maintenance setting to prolong remission duration after standard treatment. Data on the in vivo effects of lenalidomide are scarce and sometimes different from the well-described in vitro effects. We therefore evaluated the numerical, phenotypical and functional impact of lenalidomide maintenance on several immune cell types in a cohort of seventeen homogeneously treated myeloma patients achieving a low residual myeloma burden after a bortezomib based-induction followed by autologous stem cell transplantation. Lenalidomide maintenance: 1) increased the fraction of naïve CD8+ T cells and several memory T-cell subsets, 2) reduced the numbers of terminal effector CD8+ T cells, 3) resulted in a higher expression of co-stimulatory molecules on resting T cells and of the inhibitory checkpoint molecules LAG-3 on CD4+ T cells and TIM-3 on CD4+ and CD8+ T cells, 4) reduced the number of TIGIT+ CD8+ T cells, 5) increased the number of regulatory T cells with a phenotype associated with strong suppressive capacity. Purified CD8+ T cells showed increased and more polyfunctional recall viral responses. However, PBMC responses were not enhanced during lenalidomide maintenance and CD4+ T-cell responses specific for the myeloma-associated antigen MAGE-C1 even tended to become lower. We conclude that lenalidomide maintenance after autologous stem cell transplantation has complex pleotropic effects on the immune environment. Immune interventions such as anti-myeloma vaccination should include measures to tackle an expanded inhibitory Treg compartment.

10.
Oncotarget ; 9(45): 27797-27808, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29963238

RESUMO

Blockade of programmed cell death protein 1 (PD-1) immune checkpoint receptor signaling is an established standard treatment for many types of cancer and indications are expanding. Successful clinical trials using monoclonal antibodies targeting PD-1 signaling have boosted preclinical research, encouraging development of novel therapeutics. Standardized assays to evaluate their bioactivity, however, remain restricted. The robust bioassays available all lack antigen-specificity. Here, we developed an antigen-specific, short-term and high-throughput T cell assay with versatile readout possibilities. A genetically modified T cell receptor (TCR)-deficient T cell line was stably transduced with PD-1. Transfection with messenger RNA encoding a TCR of interest and subsequent overnight stimulation with antigen-presenting cells, results in eGFP-positive and granzyme B-producing T cells for single cell or bulk analysis. Control antigen-presenting cells induced reproducible high antigen-specific eGFP and granzyme B expression. Upon PD-1 interaction, ligand-positive antigen-presenting immune or tumor cells elicited significantly lower eGFP and granzyme B expression, which could be restored by anti-PD-(L)1 blocking antibodies. This convenient cell-based assay shows a valuable tool for translational and clinical research on antigen-specific checkpoint-targeted therapy approaches.

11.
ACS Nano ; 12(10): 9815-9829, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30256609

RESUMO

In vitro transcribed mRNA constitutes a versatile platform to encode antigens and to evoke CD8 T-cell responses. Systemic delivery of mRNA packaged into cationic liposomes (lipoplexes) has proven particularly powerful in achieving effective antitumor immunity in animal models. Yet, T-cell responses to mRNA lipoplexes critically depend on the induction of type I interferons (IFN), potent pro-inflammatory cytokines, which inflict dose-limiting toxicities. Here, we explored an advanced hybrid lipid polymer shell mRNA nanoparticle (lipopolyplex) endowed with a trimannose sugar tree as an alternative delivery vehicle for systemic mRNA vaccination. Like mRNA lipoplexes, mRNA lipopolyplexes were extremely effective in conferring antitumor T-cell immunity upon systemic administration. Conversely to mRNA lipoplexes, mRNA lipopolyplexes did not rely on type I IFN for effective T-cell immunity. This differential mode of action of mRNA lipopolyplexes enabled the incorporation of N1 methyl pseudouridine nucleoside modified mRNA to reduce inflammatory responses without hampering T-cell immunity. This feature was attributed to mRNA lipopolyplexes, as the incorporation of thus modified mRNA into lipoplexes resulted in strongly weakened T-cell immunity. Taken together, we have identified lipopolyplexes containing N1 methyl pseudouridine nucleoside modified mRNA as potent yet low-inflammatory alternatives to the mRNA lipoplexes currently explored in early phase clinical trials.


Assuntos
Inflamação/imunologia , Lipídeos/imunologia , RNA Mensageiro/imunologia , Linfócitos T/imunologia , Animais , Células Dendríticas/imunologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície , Células Tumorais Cultivadas
12.
Oncotarget ; 8(26): 41932-41946, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28410210

RESUMO

Blockade of the inhibitory PD-1/PD-L1 immune checkpoint axis is a promising cancer treatment. Nonetheless, a significant number of patients and malignancies do not respond to this therapy. To develop a screen for response to PD-1/PD-L1 inhibition, it is critical to develop a non-invasive tool to accurately assess dynamic immune checkpoint expression. Here we evaluated non-invasive SPECT/CT imaging of PD-L1 expression, in murine tumor models with varying PD-L1 expression, using high affinity PD-L1-specific nanobodies (Nbs). We generated and characterized 37 Nbs recognizing mouse PD-L1. Among those, four Nbs C3, C7, E2 and E4 were selected and evaluated for preclinical imaging of PD-L1 in syngeneic mice. We performed SPECT/CT imaging in wild type versus PD-L1 knock-out mice, using Technetium-99m (99mTc) labeled Nbs. Nb C3 and E2 showed specific antigen binding and beneficial biodistribution. Through the use of CRISPR/Cas9 PD-L1 knock-out TC-1 lung epithelial cell lines, we demonstrate that SPECT/CT imaging using Nb C3 and E2 identifies PD-L1 expressing tumors, but not PD-L1 non-expressing tumors, thereby confirming the diagnostic potential of the selected Nbs. In conclusion, these data show that Nbs C3 and E2 can be used to non-invasively image PD-L1 levels in the tumor, with the strength of the signal correlating with PD-L1 levels. These findings warrant further research into the use of Nbs as a tool to image inhibitory signals in the tumor environment.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Traçadores Radioativos , Anticorpos de Domínio Único , Animais , Biomarcadores , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Camundongos Knockout , Neoplasias/patologia , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único
13.
Mol Ther Nucleic Acids ; 5(6): e326, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27327138

RESUMO

Cancer vaccines based on mRNA are extensively studied. The fragile nature of mRNA has instigated research into carriers that can protect it from ribonucleases and as such enable its systemic use. However, carrier-mediated delivery of mRNA has been linked to production of type I interferon (IFN) that was reported to compromise the effectiveness of mRNA vaccines. In this study, we evaluated a cationic lipid for encapsulation of mRNA. The nanometer-sized, negatively charged lipid mRNA particles (LMPs) efficiently transfected dendritic cells and macrophages in vitro. Furthermore, i.v. delivery of LMPs resulted in rapid expression of the mRNA-encoded protein in spleen and liver, predominantly in CD11c(+) cells and to a minor extent in CD11b(+) cells. Intravenous immunization of mice with LMPs containing ovalbumin, human papilloma virus E7, and tyrosinase-related protein-2 mRNA, either combined or separately, elicited strong antigen-specific T-cell responses. We further showed the production of type I IFNs upon i.v. LMP delivery. Although this decreased the expression of the mRNA-encoded protein, it supported the induction of antigen-specific T-cell responses. These data question the current notion that type I IFNs hamper particle-mediated mRNA vaccines.

14.
Cancer Immunol Res ; 4(2): 146-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26659303

RESUMO

Modulating the activity of tumor-infiltrating dendritic cells (TiDC) provides opportunities for novel cancer interventions. In this article, we report on our study of the uptake of mRNA by CD8α(+) cross-presenting TiDCs upon its intratumoral (i.t.) delivery. We exploited this property to deliver mRNA encoding the costimulatory molecule CD70, the activation stimuli CD40 ligand, and constitutively active Toll-like receptor 4, referred to as TriMix mRNA. We show that TiDCs are reprogrammed to mature antigen-presenting cells that migrate to tumor-draining lymph nodes (TDLN). TriMix stimulated antitumor T-cell responses to spontaneously engulfed cancer antigens, including a neoepitope. We show in various mouse cancer models that i.t. delivery of TriMix mRNA results in systemic therapeutic antitumor immunity. Finally, we show that the induction of antitumor responses critically depends on TiDCs, whereas it only partially depends on TDLNs. As such, we provide a platform and a mechanistic rationale for the clinical testing of i.t. administration of TriMix mRNA.


Assuntos
Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária , Neoplasias/genética , Neoplasias/imunologia , RNA Mensageiro/genética , Linfócitos T/imunologia , Animais , Biomarcadores , Ligante CD27/genética , Ligante de CD40/genética , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Neoplasias/mortalidade , Neoplasias/patologia , Fenótipo , RNA Mensageiro/administração & dosagem , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/metabolismo , Receptor 4 Toll-Like/genética
15.
Expert Rev Vaccines ; 14(2): 235-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25263094

RESUMO

About 25 years ago, mRNA became a tool of interest in anticancer vaccination approaches. However, due to its rapid degradation in situ, direct application of mRNA was confronted with considerable skepticism during its early use. Consequently, mRNA was for a long time mainly used for the ex vivo transfection of dendritic cells, professional antigen-presenting cells known to stimulate immunity. The interest in direct application of mRNA experienced a revival, as researchers became aware of the many advantages mRNA offers. Today, mRNA is considered to be an ideal vehicle for the induction of strong immune responses against cancer. The growing numbers of preclinical trials and as a consequence the increasing clinical application of mRNA as an off-the-shelf anticancer vaccine signifies a renaissance for transcript-based antitumor therapy. In this review, we highlight this renaissance using a timeline providing all milestones in the application of mRNA for anticancer vaccination.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/administração & dosagem , Neoplasias/terapia , RNA Mensageiro/imunologia , Vacinação , Vacinas de DNA/administração & dosagem , Vacinas Anticâncer/imunologia , Ensaios Clínicos como Assunto , Células Dendríticas/imunologia , Humanos , Imunoterapia , Neoplasias/imunologia , Vacinas de DNA/imunologia
16.
Oncotarget ; 6(3): 1359-81, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25682197

RESUMO

The identification of tumor-specific antigens and the immune responses directed against them has instigated the development of therapies to enhance antitumor immune responses. Most of these cancer immunotherapies are administered systemically rather than directly to tumors. Nonetheless, numerous studies have demonstrated that intratumoral therapy is an attractive approach, both for immunization and immunomodulation purposes. Injection, recruitment and/or activation of antigen-presenting cells in the tumor nest have been extensively studied as strategies to cross-prime immune responses. Moreover, delivery of stimulatory cytokines, blockade of inhibitory cytokines and immune checkpoint blockade have been explored to restore immunological fitness at the tumor site. These tumor-targeted therapies have the potential to induce systemic immunity without the toxicity that is often associated with systemic treatments. We review the most promising intratumoral immunotherapies, how these affect systemic antitumor immunity such that disseminated tumor cells are eliminated, and which approaches have been proven successful in animal models and patients.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA