RESUMO
Cervical disc arthroplasty (CDA) has received widespread attention as an alternative to anterior fusion due to its similar neurological and functional improvement, with the advantage of preservation of segmental motion. As CDA becomes more widely implemented, the potential for unexpected device-related adverse events may be identified. The authors report on a 48-year-old man who presented with progressive neurological deficits 3 years after 2-level CDA was performed. Imaging demonstrated periprosthetic osteolysis of the vertebral endplates at the CDA levels, with a heterogeneously enhancing ventral epidural mass compressing the spinal cord. Diagnostic workup for infectious and neoplastic processes was negative. The presumptive diagnosis was an inflammatory pannus formation secondary to abnormal motion at the CDA levels. Posterior cervical decompression and instrumented fusion was performed without removal of the arthroplasty devices or the ventral epidural mass. Postoperative imaging at 2 months demonstrated complete resolution of the compressive pannus, with associated improvement in clinical symptoms. Follow-up MRI at > 6 months showed no recurrence of the pannus. At 1 year postoperatively, CT scanning revealed improvement in periprosthetic osteolysis. Inflammatory pannus formation may be an unexpected complication of abnormal segmental motion after CDA. This rare etiology of an epidural mass associated with an arthroplasty device should be considered, in addition to workup for other potential infectious or neoplastic mass lesions. In symptomatic individuals, compressive pannus lesions can be effectively treated with fusion across the involved segment without removal of the device.
Assuntos
Artroplastia , Vértebras Cervicais/cirurgia , Complicações Pós-Operatórias/cirurgia , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/cirurgia , Fusão Vertebral , Vértebras Cervicais/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico por imagem , Compressão da Medula Espinal/diagnóstico por imagem , Fusão Vertebral/métodosRESUMO
Early detection of vascular inflammation would allow deployment of targeted strategies for the prevention or treatment of multiple disease states. Because vascular inflammation is not detectable with commonly used imaging modalities, we hypothesized that phenotypic changes in perivascular adipose tissue (PVAT) induced by vascular inflammation could be quantified using a new computerized tomography (CT) angiography methodology. We show that inflamed human vessels release cytokines that prevent lipid accumulation in PVAT-derived preadipocytes in vitro, ex vivo, and in vivo. We developed a three-dimensional PVAT analysis method and studied CT images of human adipose tissue explants from 453 patients undergoing cardiac surgery, relating the ex vivo images with in vivo CT scan information on the biology of the explants. We developed an imaging metric, the CT fat attenuation index (FAI), that describes adipocyte lipid content and size. The FAI has excellent sensitivity and specificity for detecting tissue inflammation as assessed by tissue uptake of 18F-fluorodeoxyglucose in positron emission tomography. In a validation cohort of 273 subjects, the FAI gradient around human coronary arteries identified early subclinical coronary artery disease in vivo, as well as detected dynamic changes of PVAT in response to variations of vascular inflammation, and inflamed, vulnerable atherosclerotic plaques during acute coronary syndromes. Our study revealed that human vessels exert paracrine effects on the surrounding PVAT, affecting local intracellular lipid accumulation in preadipocytes, which can be monitored using a CT imaging approach. This methodology can be implemented in clinical practice to noninvasively detect plaque instability in the human coronary vasculature.