Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 19(1): 95, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530870

RESUMO

BACKGROUND: Loss of the Ras GTPase-activating protein neurofibromin promotes nervous system tumor pathogenesis in patients with neurofibromatosis type 1 (NF1). Neurofibromin loss potentially hyperactivates classic Ras (H-Ras, N-Ras, K-Ras), M-Ras, and R-Ras (R-Ras, R-Ras2/TC21) subfamily proteins. We have shown that classic Ras proteins promote proliferation and survival, but not migration, in malignant peripheral nerve sheath tumor (MPNST) cells. However, it is unclear whether R-Ras, R-Ras2 and M-Ras are expressed and hyperactivated in MPNSTs and, if so, whether they contribute to MPNST pathogenesis. We assessed the expression and activation of these proteins in MPNST cells and inhibited them to determine the effect this had on proliferation, migration, invasion, survival and the phosphoproteome. METHODS: NF1-associated (ST88-14, 90-8, NMS2, NMS-PC, S462, T265-2c) and sporadic (STS-26T, YST-1) MPNST lines were used. Cells were transfected with doxycycline-inducible vectors expressing either a pan-inhibitor of the R-Ras subfamily [dominant negative (DN) R-Ras] or enhanced green fluorescent protein (eGFP). Methodologies used included immunoblotting, immunocytochemistry, PCR, Transwell migration, 3H-thymidine incorporation, calcein cleavage assays and shRNA knockdowns. Proteins in cells with or without DN R-Ras expression were differentially labeled with SILAC and mass spectrometry was used to identify phosphoproteins and determine their relative quantities in the presence and absence of DN R-Ras. Validation of R-Ras and R-Ras2 action and R-Ras regulated networks was performed using genetic and/or pharmacologic approaches. RESULTS: R-Ras2 was uniformly expressed in MPNST cells, with R-Ras present in a major subset. Both proteins were activated in neurofibromin-null MPNST cells. Consistent with classical Ras inhibition, DN R-Ras and R-Ras2 knockdown inhibited proliferation. However, DN R-Ras inhibition impaired migration and invasion but not survival. Mass spectrometry-based phosphoproteomics identified thirteen protein networks distinctly regulated by DN R-Ras, including multiple networks regulating cellular movement and morphology. ROCK1 was a prominent mediator in these networks. DN R-Ras expression and RRAS and RRAS2 knockdown inhibited migration and ROCK1 phosphorylation; ROCK1 inhibition similarly impaired migration and invasion, altered cellular morphology and triggered the accumulation of large intracellular vesicles. CONCLUSIONS: R-Ras proteins function distinctly from classic Ras proteins by regulating distinct signaling pathways that promote MPNST tumorigenesis by mediating migration and invasion. Mutations of the NF1 gene potentially results in the activation of multiple Ras proteins, which are key regulators of many biologic effects. The protein encoded by the NF1 gene, neurofibromin, acts as an inhibitor of both classic Ras and R-Ras proteins; loss of neurofibromin could cause these Ras proteins to become persistently active, leading to the development of cancer. We have previously shown that three related Ras proteins (the classic Ras proteins) are highly activated in malignant peripheral nerve sheath tumor (MPNST) cells with neurofibromin loss and that they drive cancer cell proliferation and survival by activating multiple cellular signaling pathways. Here, we examined the expression, activation and action of R-Ras proteins in MPNST cells that have lost neurofibromin. Both R-Ras and R-Ras2 are expressed in MPNST cells and activated. Inhibition of R-Ras action inhibited proliferation, migration and invasion but not survival. We examined the activation of cytoplasmic signaling pathways in the presence and absence of R-Ras signaling and found that R-Ras proteins regulated 13 signaling pathways distinct from those regulated by classic Ras proteins. Closer study of an R-Ras regulated pathway containing the signaling protein ROCK1 showed that inhibition of either R-Ras, R-Ras2 or ROCK1 similarly impaired cellular migration and invasion and altered cellular morphology. Inhibition of R-Ras/R-Ras2 and ROCK1 signaling also triggered the accumulation of abnormal intracellular vesicles, indicating that these signaling molecules regulate the movement of proteins and other molecules in the cellular interior. Video Abstract.


Assuntos
Proteínas de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Neurofibrossarcoma/genética , Proteínas ras/genética , Quinases Associadas a rho/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neurofibromatose 1/patologia , Neurofibrossarcoma/patologia , Fosfoproteínas/genética , Fosforilação/genética , Proteoma/genética , Transdução de Sinais/genética
2.
Cell Commun Signal ; 17(1): 74, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291965

RESUMO

BACKGROUND: We have found that erbB receptor tyrosine kinases drive Ras hyperactivation and growth in NF1-null malignant peripheral nerve sheath tumors (MPNSTs). However, MPNSTs variably express multiple erbB receptors with distinct functional characteristics and it is not clear which of these receptors drive MPNST pathogenesis. Here, we test the hypothesis that altered erbB4 expression promotes MPNST pathogenesis by uniquely activating key cytoplasmic signaling cascades. METHODS: ErbB4 expression was assessed using immunohistochemistry, immunocytochemistry, immunoblotting and real-time PCR. To define erbB4 functions, we generated mice that develop MPNSTs with floxed Erbb4 alleles (P0-GGFß3;Trp53+/-;Erbb4flox/flox mice) and ablated Erbb4 in these tumors. MPNST cell proliferation and survival was assessed using 3H-thymidine incorporation, MTT assays, Real-Time Glo and cell count assays. Control and Erbb4-null MPNST cells were orthotopically xenografted in immunodeficient mice and the growth, proliferation (Ki67 labeling), apoptosis (TUNEL labeling) and angiogenesis of these grafts was analyzed. Antibody arrays querying cytoplasmic kinases were used to identify erbB4-responsive kinases. Pharmacologic or genetic inhibition was used to identify erbB4-responsive kinases that drive proliferation. RESULTS: Aberrant erbB4 expression was evident in 25/30 surgically resected human MPNSTs and in MPNSTs from genetically engineered mouse models (P0-GGFß3 and P0-GGFß3;Trp53+/- mice); multiple erbB4 splice variants that differ in their ability to activate PI3 kinase and nuclear signaling were present in MPNST-derived cell lines. Erbb4-null MPNST cells demonstrated decreased proliferation and survival and altered morphology relative to non-ablated controls. Orthotopic allografts of Erbb4-null cells were significantly smaller than controls, with reduced proliferation, survival and vascularization. ERBB4 knockdown in human MPNST cells similarly inhibited DNA synthesis and viability. Although we have previously shown that broad-spectrum erbB inhibitors inhibit Ras activation, Erbb4 ablation did not affect Ras activation, suggesting that erbB4 drives neoplasia via non-Ras dependent pathways. An analysis of 43 candidate kinases identified multiple NRG1ß-responsive and erbB4-dependent signaling cascades including the PI3K, WNK1, STAT3, STAT5 and phospholipase-Cγ pathways. Although WNK1 inhibition did not alter proliferation, inhibition of STAT3, STAT5 and phospholipase-Cγ markedly reduced proliferation. CONCLUSIONS: ErbB4 promotes MPNST growth by activating key non-Ras dependent signaling cascades including the STAT3, STAT5 and phospholipase-Cγ pathways. ErbB4 and its effector pathways are thus potentially useful therapeutic targets in MPNSTs.


Assuntos
Neoplasias de Bainha Neural/patologia , Receptor ErbB-4/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fosfolipase C gama/metabolismo , Fosforilação , Receptor ErbB-4/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo
3.
Acta Neuropathol ; 127(4): 573-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24232507

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are Schwann cell-derived malignancies that arise from plexiform neurofibromas in patients with mutation of the neurofibromin 1 (NF1) gene. We have shown that the growth factor neuregulin-1 (NRG1) also contributes to human neurofibroma and MPNST pathogenesis and that outbred C57BL/6J × SJL/J transgenic mice overexpressing NRG1 in Schwann cells (P0-GGFß3 mice) recapitulate the process of neurofibroma-MPNST progression. However, it is unclear whether NRG1 acts predominantly within NF1-regulated signaling cascades or instead activates other essential cascades that cooperate with NF1 loss to promote tumorigenesis. We now report that tumorigenesis is suppressed in inbred P0-GGFß3 mice on a C57BL/6J background. To determine whether NRG1 overexpression interacts with reduced Nf1 or Trp53 gene dosage to "unmask" tumorigenesis in these animals, we followed cohorts of inbred P0-GGFß3;Nf1+/−, P0-GGFß3;Trp53+/− and control (P0-GGFß3, Nf1+/− and Trp53+/−) mice for 1 year. We found no reduction in survival or tumors in control and P0-GGFß3;Nf1+/− mice. In contrast, P0-GGFß3;Trp53+/− mice died on average at 226 days, with MPNSTs present in 95 % of these mice. MPNSTs in inbred P0-GGFß3;Trp53+/− mice arose de novo from micro-MPNSTs that uniformly develop intraganglionically. These micro-MPNSTs are of lower grade (WHO grade II-III) than the major MPNSTs (WHO grade III-IV); array comparative genomic hybridization showed that lower grade MPNSTs also had fewer genomic abnormalities. Thus, P0-GGFß3;Trp53+/− mice represent a novel model of low- to high-grade MPNST progression. We further conclude that NRG1 promotes peripheral nervous system neoplasia predominantly via its effects on the signaling cascades affected by Nf1 loss.


Assuntos
Expressão Gênica , Haploinsuficiência/genética , Neuregulina-1/metabolismo , Neoplasias do Nervo Óptico/genética , Neoplasias do Nervo Óptico/patologia , Proteína Supressora de Tumor p53/genética , Animais , Desmina/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/metabolismo , Neurofibroma/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Raízes Nervosas Espinhais/metabolismo , Raízes Nervosas Espinhais/patologia
4.
J Clin Transl Sci ; 7(1): e270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38380392

RESUMO

Introduction: Most students in MD-PhD programs take a leave of absence from medical school to complete PhD training, which promotes a natural loss of clinical skills and knowledge and could negatively impact a student's long-term clinical knowledge. To address this concern, clinical refresher courses in the final year of PhD training have traditionally been used; however, effectiveness of such courses versus a longitudinal clinical course spanning all PhD training years is unclear. Methods: The University of Alabama at Birmingham MD-PhD Program implemented a comprehensive continuing clinical education (CCE) course spanning PhD training years that features three course components: (1) clinical skills; (2) clinical knowledge; and (3) specialty exposure activities. To evaluate course effectiveness, data from an anonymous student survey completed at the end of each semester were analyzed. Results: Five hundred and ninety-seven surveys were completed by MD-PhD students from fall 2014 to 2022. Survey responses indicated that the majority of students found the course helpful to: maintain clinical skills and knowledge (544/597, 91% and 559/597, 94%; respectively), gain exposure to clinical specialties (568/597, 95%), and prepare them for responsibilities during clinical clerkships. During semesters following lockdowns from the COVID-19 pandemic, there were significant drops in students' perceived preparedness. Conclusions: Positive student survey feedback and improved preparedness to return to clinic after development of the course suggests the CCE course is a useful approach to maintain clinical knowledge during research training.

5.
Neurology ; 99(18): 805-810, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36028321

RESUMO

Baylisascaris procyonis, or raccoon roundworm, is a rare cause of eosinophilic meningoencephalitis with historically poor clinical outcomes. Symptoms of neural larval migrans begin approximately 2-4 weeks after ingestion with fatigue, nausea, fever, and lethargy and then rapidly progress to weakness, incoordination, ataxia, seizures, altered mental status, and finally coma. Only 31 other cases of CNS Baylisascaris neural larval migrans have been reported, with more than 25% being lethal. Of the remaining cases, all but 3 were neurologically devastated largely because of delays in diagnosis and treatment. We present a case of an infant with Baylisascaris neural larval migrans manifested as right hemiparesis, ataxia, and cortical blindness. Eosinophilia was missed at an outside hospital due to misidentification of eosinophils as monocytes on automated cell differential. Repeated testing of serum and CSF revealed marked eosinophilia consistent with eosinophilic meningoencephalitis, and serum antibody testing through the Centers of Disease Control confirmed Baylisascaris infection. Notably, this child had a remarkably positive outcome with near complete recovery of neurologic function after treatment with albendazole and steroids. Although eosinophilic meningoencephalitis is rare, accounting for less than 3% of all lumbar punctures with pleocytosis, this case illustrates (1) the importance of early disease recognition and treatment to improve patient outcomes and (2) the fact that automated cell differentials may misidentify eosinophils as monocytes.


Assuntos
Ascaridoidea , Eosinofilia , Meningoencefalite , Animais , Masculino , Raciocínio Clínico , Guaxinins , Meningoencefalite/diagnóstico , Ataxia/complicações , Eosinofilia/complicações , Eosinofilia/diagnóstico , Paresia/complicações
6.
Pediatr Neurol ; 134: 85-92, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35849956

RESUMO

BACKGROUND: Moyamoya syndrome (MMS) is a progressive cerebral arteriopathy with increased incidence in children with neurofibromatosis type 1 (NF1). Despite the potential for significant neurological morbidity including stroke, little is known about the natural history, and no guidelines exist for screening and management of NF1-associated MMS. METHODS: We identified 152 literature cases of children aged ≤18 years with NF1-associated MMS. A meta-analysis was performed evaluating clinical and neuroimaging findings and patient outcomes. Data from 19 patients with NF1-associated MMS from our center treated from January 1995 to July 2020 were abstracted via chart review and similarly analyzed for clinical and neuroimaging features. RESULTS: Meta-analysis of literature cases showed a median age of MMS diagnosis of 6 years (interquartile range 3 to 10.8 years). Optic pathway gliomas were more common in patients with MMS (42%) compared with historical prevalence. Stroke or transient ischemic attack (TIA) was present at diagnosis in 46%. TIA and stroke were more common in patients with bilateral versus unilateral MMS (62% vs 34%, P = 0.001) and in children aged <4 years versus those aged ≥4 years (61% vs 40%, P = 0.02). Compared with the literature cases, our cohort was more frequently asymptomatic (42% vs 25%) and less likely to present with TIA or stroke (32% vs 46%) at diagnosis. CONCLUSIONS: These data suggest there is an aggressive form of MMS in children with NF1 <4 years of age. Therefore, early screening should be considered to facilitate early detection and treatment of cerebral arteriopathy.


Assuntos
Doenças Arteriais Cerebrais , Ataque Isquêmico Transitório , Doença de Moyamoya , Neurofibromatose 1 , Acidente Vascular Cerebral , Doenças Arteriais Cerebrais/complicações , Criança , Pré-Escolar , Humanos , Ataque Isquêmico Transitório/complicações , Doença de Moyamoya/complicações , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/epidemiologia , Neurofibromatose 1/complicações , Neurofibromatose 1/diagnóstico por imagem , Neurofibromatose 1/epidemiologia , Estudos Retrospectivos , Acidente Vascular Cerebral/etiologia
7.
J Vis Exp ; (174)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34515675

RESUMO

The development of new drugs that precisely target key proteins in human cancers is fundamentally altering cancer therapeutics. However, before these drugs can be used, their target proteins must be validated as therapeutic targets in specific cancer types. This validation is often performed by knocking out the gene encoding the candidate therapeutic target in a genetically engineered mouse (GEM) model of cancer and determining what effect this has on tumor growth. Unfortunately, technical issues such as embryonic lethality in conventional knockouts and mosaicism in conditional knockouts often limit this approach. To overcome these limitations, an approach to ablating a floxed embryonic lethal gene of interest in short-term cultures of malignant peripheral nerve sheath tumors (MPNSTs) generated in a GEM model was developed. This paper describes how to establish a mouse model with the appropriate genotype, derive short-term tumor cultures from these animals, and then ablate the floxed embryonic lethal gene using an adenoviral vector that expresses Cre recombinase and enhanced green fluorescent protein (eGFP). Purification of cells transduced with adenovirus using fluorescence-activated cell sorting (FACS) and the quantification of the effects that gene ablation exerts on cellular proliferation, viability, the transcriptome, and orthotopic allograft growth is then detailed. These methodologies provide an effective and generalizable approach to identifying and validating therapeutic targets in vitro and in vivo. These approaches also provide a renewable source of low-passage tumor-derived cells with reduced in vitro growth artifacts. This allows the biological role of the targeted gene to be studied in diverse biologic processes such as migration, invasion, metastasis, and intercellular communication mediated by the secretome.


Assuntos
Neoplasias de Bainha Neural , Neurofibrossarcoma , Alelos , Animais , Proliferação de Células , Transformação Celular Neoplásica , Genes Letais , Camundongos
8.
Sci Rep ; 11(1): 5690, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707600

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive Schwann cell-derived neoplasms that occur sporadically or in patients with neurofibromatosis type 1 (NF1). Preclinical research on sporadic MPNSTs has been limited as few cell lines exist. We generated and characterized a new sporadic MPNST cell line, 2XSB, which shares the molecular and genomic features of the parent tumor. These cells have a highly complex karyotype with extensive chromothripsis. 2XSB cells show robust invasive 3-dimensional and clonogenic culture capability and form solid tumors when xenografted into immunodeficient mice. High-density single nucleotide polymorphism array and whole exome sequencing analyses indicate that, unlike NF1-associated MPNSTs, 2XSB cells have intact, functional NF1 alleles with no evidence of mutations in genes encoding components of Polycomb Repressor Complex 2. However, mutations in other genes implicated in MPNST pathogenesis were identified in 2XSB cells including homozygous deletion of CDKN2A and mutations in TP53 and PTEN. We also identified mutations in genes not previously associated with MPNSTs but associated with the pathogenesis of other human cancers. These include DNMT1, NUMA1, NTRK1, PDE11A, CSMD3, LRP5 and ACTL9. This sporadic MPNST-derived cell line provides a useful tool for investigating the biology and potential treatment regimens for sporadic MPNSTs.


Assuntos
Genoma Humano , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Sequências Repetitivas de Ácido Nucleico , Linhagem Celular Tumoral , Proliferação de Células , Dosagem de Genes , Genes Neoplásicos , Humanos , Cariotipagem , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Sequências Repetitivas de Ácido Nucleico/genética , Sequenciamento do Exoma
10.
Dis Model Mech ; 9(7): 759-67, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27482814

RESUMO

Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681*) and a missense mutation (c.2542G>C; p.Gly848Arg). The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1(Arg681*) and missense NF1(Gly848Arg) mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1(Gly848Arg) mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1(Arg681*) mutation are not viable. Mice with one Nf1(Arg681*) allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf1(4F/Arg681*); DhhCre) display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1.


Assuntos
Códon sem Sentido/genética , Mutação de Sentido Incorreto/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Animais , Modelos Animais de Doenças , Embrião de Mamíferos/patologia , Humanos , Integrases/metabolismo , Camundongos , Neurofibroma/patologia , Fenótipo , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Medula Espinal/patologia , Medula Espinal/ultraestrutura
11.
Parkinsonism Relat Disord ; 21(12): 1469-70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26482492

RESUMO

Freezing of gait causes considerable morbidity in patients with Parkinson's disease and is often refractory to conventional treatments. In this double-blind, randomized evaluation, unilateral interleaved deep brain stimulation in the subthalamic nucleus/substantia nigra pars reticulata region significantly improved freezing of gait in a patient with advanced Parkinson's disease.


Assuntos
Estimulação Encefálica Profunda/métodos , Transtornos Neurológicos da Marcha/terapia , Doença de Parkinson/complicações , Substância Negra/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Método Duplo-Cego , Transtornos Neurológicos da Marcha/etiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Gravação de Videoteipe
12.
J Neuropathol Exp Neurol ; 74(6): 568-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25946318

RESUMO

Neurofibromin, the tumor suppressor encoded by the neurofibromatosis type 1 (NF1) gene, potentially suppresses the activation of H-Ras, N-Ras, and K-Ras. However, it is not known whether these classic Ras proteins are hyperactivated in NF1-null nerve sheath tumors, how they contribute to tumorigenesis, and what signaling pathways mediate their effects. Here we show that H-Ras, N-Ras, and K-Ras are coexpressed with their activators (guanine nucleotide exchange factors) in neurofibromin-null malignant peripheral nerve sheath tumor (MPNST) cells, and that all 3 Ras proteins are activated. Dominant negative (DN) H-Ras, a pan-inhibitor of the classic Ras family, inhibited MPNST proliferation and survival, but not migration. However, NF1-null MPNST cells were variably dependent on individual Ras proteins. In some lines, ablation of H-Ras, N-Ras, and/or K-Ras inhibited mitogenesis. In others, ablation of a single Ras protein had no effect on proliferation; in these lines, ablation of a single Ras protein resulted in compensatory increases in the activation and/or expression of other Ras proteins. Using mass spectrometry-based phosphoproteomics, we identified 7 signaling networks affecting morphology, proliferation, and survival that are regulated by DN H-Ras. Thus, neurofibromin loss activates multiple classic Ras proteins that promote proliferation and survival by regulating several distinct signaling cascades.


Assuntos
Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Neurofibromatose 1/metabolismo , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cromatografia Líquida , Doxiciclina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação/genética , Neoplasias de Bainha Neural/patologia , Neurofibromatose 1/genética , Fosfoproteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Espectrometria de Massas em Tandem , Transfecção , Proteínas ras/genética
13.
J Neuropathol Exp Neurol ; 73(11): 1078-90, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25289889

RESUMO

Chemotherapeutic agents effective against malignant peripheral nerve sheath tumors (MPNSTs) are urgently needed. We recently found that tamoxifen potently impedes xenograft growth. In vitro, tamoxifen inhibits MPNST proliferation and survival in an estrogen receptor-independent manner; these effects are phenocopied by the calmodulin inhibitor trifluoperazine. The present study was performed to establish the mechanism of action of tamoxifen in vivo and optimize its therapeutic effectiveness. To determine if tamoxifen has estrogen receptor-dependent effects in vivo, we grafted MPNST cells in castrated and ovariectomized mice; xenograft growth was unaffected by reductions in sex hormones. To establish whether tamoxifen and trifluoperazine additively or synergistically impede MPNST growth, mice xenografted with neurofibromatosis type 1-associated or sporadic MPNST cells were treated with tamoxifen, trifluoperazine, or both drugs for 30 days. Both monotherapies inhibited graft growth by 50%, whereas combinatorial treatment maximally reduced graft mass by 90% and enhanced decreases in proliferation and survival. Kinomic analyses showed that tamoxifen and trifluoperazine have both shared and distinct targets in MPNSTs. In addition, trifluoperazine prevented tamoxifen-induced increases in serum/glucocorticoid regulated kinase 1, a protein linked to tamoxifen resistance. These findings suggest that combinatorial therapy with tamoxifen and trifluoperazine is effective against MPNSTs because these agents target complementary pathways that are essential for MPNST pathogenesis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Neurilemoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Feminino , Masculino , Camundongos , Neurilemoma/patologia , Transdução de Sinais/fisiologia , Tamoxifeno/administração & dosagem , Resultado do Tratamento , Trifluoperazina/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA