Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Annu Rev Biochem ; 86: 609-636, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28375742

RESUMO

Lipids are produced site-specifically in cells and then distributed nonrandomly among membranes via vesicular and nonvesicular trafficking mechanisms. The latter involves soluble amphitropic proteins extracting specific lipids from source membranes to function as molecular solubilizers that envelope their insoluble cargo before transporting it to destination sites. Lipid-binding and lipid transfer structural motifs range from multi-ß-strand barrels, to ß-sheet cups and baskets covered by α-helical lids, to multi-α-helical bundles and layers. Here, we focus on how α-helical proteins use amphipathic helical layering and bundling to form modular lipid-binding compartments and discuss the functional consequences. Preformed compartments generally rely on intramolecular disulfide bridging to maintain conformation (e.g., albumins, nonspecific lipid transfer proteins, saposins, nematode polyprotein allergens/antigens). Insights into nonpreformed hydrophobic compartments that expand and adapt to accommodate a lipid occupant are few and provided mostly by the three-layer, α-helical ligand-binding domain of nuclear receptors. The simple but elegant and nearly ubiquitous two-layer, α-helical glycolipid transfer protein (GLTP)-fold now further advances understanding.


Assuntos
Albuminas/química , Alérgenos/química , Antígenos/química , Proteínas de Transporte/química , Lipídeos/química , Albuminas/genética , Albuminas/metabolismo , Alérgenos/genética , Alérgenos/metabolismo , Animais , Antígenos/genética , Antígenos/metabolismo , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos
2.
J Lipid Res ; 63(1): 100151, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808193

RESUMO

Lipid transfer proteins acquire and release their lipid cargoes by interacting transiently with source and destination biomembranes. In the GlycoLipid Transfer Protein (GLTP) superfamily, the two-layer all-α-helical GLTP-fold defines proteins that specifically target sphingolipids (SLs) containing either sugar or phosphate headgroups via their conserved but evolutionarily-modified SL recognitions centers. Despite comprehensive structural insights provided by X-ray crystallography, the conformational dynamics associated with membrane interaction and SL uptake/release by GLTP superfamily members have remained unknown. Herein, we report insights gained from molecular dynamics (MD) simulations into the conformational dynamics that enable ceramide-1-phosphate transfer proteins (CPTPs) to acquire and deliver ceramide-1-phosphate (C1P) during interaction with 1-palmitoyl-2-oleoyl phosphatidylcholine bilayers. The focus on CPTP reflects this protein's involvement in regulating pro-inflammatory eicosanoid production and autophagy-dependent inflammasome assembly that drives interleukin (IL-1ß and IL-18) production and release by surveillance cells. We found that membrane penetration by CPTP involved α-6 helix and the α-2 helix N-terminal region, was confined to one bilayer leaflet, and was relatively shallow. Large-scale dynamic conformational changes were minimal for CPTP during membrane interaction or C1P uptake except for the α-3/α-4 helices connecting loop, which is located near the membrane interface and interacts with certain phosphoinositide headgroups. Apart from functioning as a shallow membrane-docking element, α-6 helix was found to adeptly reorient membrane lipids to help guide C1P hydrocarbon chain insertion into the interior hydrophobic pocket of the SL binding site.These findings support a proposed 'hydrocarbon chain-first' mechanism for C1P uptake, in contrast to the 'lipid polar headgroup-first' uptake used by most lipid-transfer proteins.


Assuntos
Proteínas de Transferência de Fosfolipídeos
3.
J Biol Chem ; 296: 100600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33781749

RESUMO

Ceramide-1-phosphate transfer proteins (CPTPs) are members of the glycolipid transfer protein (GLTP) superfamily that shuttle ceramide-1-phosphate (C1P) between membranes. CPTPs regulate cellular sphingolipid homeostasis in ways that impact programmed cell death and inflammation. CPTP downregulation specifically alters C1P levels in the plasma and trans-Golgi membranes, stimulating proinflammatory eicosanoid production and autophagy-dependent inflammasome-mediated cytokine release. However, the mechanisms used by CPTP to target the trans-Golgi and plasma membrane are not well understood. Here, we monitored C1P intervesicular transfer using fluorescence energy transfer (FRET) and showed that certain phosphoinositides (phosphatidylinositol 4,5 bisphosphate (PI-(4,5)P2) and phosphatidylinositol 4-phosphate (PI-4P)) increased CPTP transfer activity, whereas others (phosphatidylinositol 3-phosphate (PI-3P) and PI) did not. PIPs that stimulated CPTP did not stimulate GLTP, another superfamily member. Short-chain PI-(4,5)P2, which is soluble and does not remain membrane-embedded, failed to activate CPTP. CPTP stimulation by physiologically relevant PI-(4,5)P2 levels surpassed that of phosphatidylserine (PS), the only known non-PIP stimulator of CPTP, despite PI-(4,5)P2 increasing membrane equilibrium binding affinity less effectively than PS. Functional mapping of mutations that led to altered FRET lipid transfer and assessment of CPTP membrane interaction by surface plasmon resonance indicated that di-arginine motifs located in the α-6 helix and the α3-α4 helix regulatory loop of the membrane-interaction region serve as PI-(4,5)P2 headgroup-specific interaction sites. Haddock modeling revealed specific interactions involving the PI-(4,5)P2 headgroup that left the acyl chains oriented favorably for membrane embedding. We propose that PI-(4,5)P2 interaction sites enhance CPTP activity by serving as preferred membrane targeting/docking sites that favorably orient the protein for function.


Assuntos
Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Homeostase , Humanos , Modelos Moleculares , Proteínas de Transferência de Fosfolipídeos/química , Conformação Proteica em alfa-Hélice
4.
Anal Chem ; 92(4): 3417-3425, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31970977

RESUMO

In vitro assessment of lipid intermembrane transfer activity by cellular proteins typically involves measurement of either radiolabeled or fluorescently labeled lipid trafficking between vesicle model membranes. Use of bilayer vesicles in lipid transfer assays usually comes with inherent challenges because of complexities associated with the preparation of vesicles and their rather short "shelf life". Such issues necessitate the laborious task of fresh vesicle preparation to achieve lipid transfer assays of high quality, precision, and reproducibility. To overcome these limitations, we have assessed model membrane generation by bicelle dilution for monitoring the transfer rates and specificity of various BODIPY-labeled sphingolipids by different glycolipid transfer protein (GLTP) superfamily members using a sensitive fluorescence resonance energy transfer approach. Robust, protein-selective sphingolipid transfer is observed using donor and acceptor model membranes generated by dilution of 0.5 q-value mixtures. The sphingolipid transfer rates are comparable to those observed between small bilayer vesicles produced by sonication or ethanol injection. Among the notable advantages of using bicelle-generated model membranes are (i) easy and straightforward preparation by means that avoid lipid fluorophore degradation and (ii) long "shelf life" after production (≥6 days) and resilience to freeze-thaw storage. The bicelle-dilution-based assay is sufficiently robust, sensitive, and stable for application, not only to purified LTPs but also for LTP activity detection in crude cytosolic fractions of cell homogenates.


Assuntos
Proteínas de Transporte/análise , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Esfingolipídeos/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Bicamadas Lipídicas/química , Esfingolipídeos/química
5.
J Biol Chem ; 293(43): 16709-16723, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30206120

RESUMO

The glycolipid transfer protein (GLTP) fold defines a superfamily of eukaryotic proteins that selectively transport sphingolipids (SLs) between membranes. However, the mechanisms determining the protein selectivity for specific glycosphingolipids (GSLs) are unclear. Here, we report the crystal structure of the GLTP homology (GLTPH) domain of human 4-phosphate adaptor protein 2 (FAPP2) bound with N-oleoyl-galactosylceramide. Using this domain, FAPP2 transports glucosylceramide from its cis-Golgi synthesis site to the trans-Golgi for conversion into complex GSLs. The FAPP2-GLTPH structure revealed an element, termed the ID loop, that controls specificity in the GLTP family. We found that, in accordance with FAPP2 preference for simple GSLs, the ID loop protrudes from behind the SL headgroup-recognition center to mitigate binding by complex GSLs. Mutational analyses including GLTP and FAPP2 chimeras with swapped ID loops supported the proposed restrictive role of the FAPP2 ID loop in GSL selectivity. Comparative analysis revealed distinctly designed ID loops in each GLTP family member. This analysis also disclosed a conserved H-bond triplet that "clasps" both ID-loop ends together to promote structural autonomy and rigidity. The findings indicated that various ID loops work in concert with conserved recognition centers to create different specificities among family members. We also observed four bulky, conserved hydrophobic residues involved in "sensor-like" interactions with lipid chains in protein hydrophobic pockets and FF motifs in GLTP and FAPP2, well-positioned to provide acyl chain-dependent SL selectivity for the hydrophobic pockets. In summary, our study provides mechanistic insights into sphingolipid recognition by the GLTP fold and uncovers the elements involved in this recognition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Transporte/química , Esfingolipídeos/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Dados de Sequência Molecular , Família Multigênica , Conformação Proteica , Alinhamento de Sequência , Esfingolipídeos/metabolismo
6.
Nature ; 500(7463): 463-7, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23863933

RESUMO

Phosphorylated sphingolipids ceramide-1-phosphate (C1P) and sphingosine-1-phosphate (S1P) have emerged as key regulators of cell growth, survival, migration and inflammation. C1P produced by ceramide kinase is an activator of group IVA cytosolic phospholipase A2α (cPLA2α), the rate-limiting releaser of arachidonic acid used for pro-inflammatory eicosanoid production, which contributes to disease pathogenesis in asthma or airway hyper-responsiveness, cancer, atherosclerosis and thrombosis. To modulate eicosanoid action and avoid the damaging effects of chronic inflammation, cells require efficient targeting, trafficking and presentation of C1P to specific cellular sites. Vesicular trafficking is likely but non-vesicular mechanisms for C1P sensing, transfer and presentation remain unexplored. Moreover, the molecular basis for selective recognition and binding among signalling lipids with phosphate headgroups, namely C1P, phosphatidic acid or their lyso-derivatives, remains unclear. Here, a ubiquitously expressed lipid transfer protein, human GLTPD1, named here CPTP, is shown to specifically transfer C1P between membranes. Crystal structures establish C1P binding through a novel surface-localized, phosphate headgroup recognition centre connected to an interior hydrophobic pocket that adaptively expands to ensheath differing-length lipid chains using a cleft-like gating mechanism. The two-layer, α-helically-dominated 'sandwich' topology identifies CPTP as the prototype for a new glycolipid transfer protein fold subfamily. CPTP resides in the cell cytosol but associates with the trans-Golgi network, nucleus and plasma membrane. RNA interference-induced CPTP depletion elevates C1P steady-state levels and alters Golgi cisternae stack morphology. The resulting C1P decrease in plasma membranes and increase in the Golgi complex stimulates cPLA2α release of arachidonic acid, triggering pro-inflammatory eicosanoid generation.


Assuntos
Proteínas de Transporte/metabolismo , Ceramidas/metabolismo , Eicosanoides/metabolismo , Animais , Apoproteínas/química , Ácido Araquidônico/metabolismo , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Ceramidas/química , Cristalografia por Raios X , Citosol/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Ácidos Fosfatídicos/química , Ácidos Fosfatídicos/metabolismo , Proteínas de Transferência de Fosfolipídeos , Conformação Proteica , Dobramento de Proteína , Especificidade por Substrato , Rede trans-Golgi/metabolismo
7.
J Biol Chem ; 292(6): 2531-2541, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28011644

RESUMO

Genetic models for studying localized cell suicide that halt the spread of pathogen infection and immune response activation in plants include Arabidopsis accelerated-cell-death 11 mutant (acd11). In this mutant, sphingolipid homeostasis is disrupted via depletion of ACD11, a lipid transfer protein that is specific for ceramide 1-phosphate (C1P) and phyto-C1P. The C1P binding site in ACD11 and in human ceramide-1-phosphate transfer protein (CPTP) is surrounded by cationic residues. Here, we investigated the functional regulation of ACD11 and CPTP by anionic phosphoglycerides and found that 1-palmitoyl-2-oleoyl-phosphatidic acid or 1-palmitoyl-2-oleoyl-phosphatidylglycerol (≤15 mol %) in C1P source vesicles depressed C1P intermembrane transfer. By contrast, replacement with 1-palmitoyl-2-oleoyl-phosphatidylserine stimulated C1P transfer by ACD11 and CPTP. Notably, "soluble" phosphatidylserine (dihexanoyl-phosphatidylserine) failed to stimulate C1P transfer. Also, none of the anionic phosphoglycerides affected transfer action by human glycolipid lipid transfer protein (GLTP), which is glycolipid-specific and has few cationic residues near its glycolipid binding site. These findings provide the first evidence for a potential phosphoglyceride headgroup-specific regulatory interaction site(s) existing on the surface of any GLTP-fold and delineate new differences between GLTP superfamily members that are specific for C1P versus glycolipid.


Assuntos
Proteínas de Transporte/metabolismo , Ceramidas/metabolismo , Fosfatidilserinas/fisiologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte/química , Linhagem Celular , Cristalografia por Raios X , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transferência de Fosfolipídeos , Ligação Proteica , Eletricidade Estática
8.
Biochim Biophys Acta Biomembr ; 1860(5): 1069-1076, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29305831

RESUMO

HET-C2 is a fungal glycolipid transfer protein (GLTP) that uses an evolutionarily-modified GLTP-fold to achieve more focused transfer specificity for simple neutral glycosphingolipids than mammalian GLTPs. Only one of HET-C2's two Trp residues is topologically identical to the three Trp residues of mammalian GLTP. Here, we provide the first assessment of the functional roles of HET-C2 Trp residues in glycolipid binding and membrane interaction. Point mutants HET-C2W208F, HET-C2W208A and HET-C2F149Y all retained >90% activity and 80-90% intrinsic Trp fluorescence intensity; whereas HET-C2F149A transfer activity decreased to ~55% but displayed ~120% intrinsic Trp emission intensity. Thus, neither W208 nor F149 is absolutely essential for activity and most Trp emission intensity (~85-90%) originates from Trp109. This conclusion was supported by HET-C2W109Y/F149Y which displayed ~8% intrinsic Trp intensity and was nearly inactive. Incubation of the HET-C2 mutants with 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles containing different monoglycosylceramides or presented by lipid ethanol-injection decreased Trp fluorescence intensity and blue-shifted the Trp λmax by differing amounts compared to wtHET-C2. With HET-C2 mutants for Trp208, the emission intensity decreases (~30-40%) and λmax blue-shifts (~12nm) were more dramatic than for wtHET-C2 or F149 mutants and closely resembled human GLTP. When Trp109 was mutated, the glycolipid induced changes in HET-C2 emission intensity and λmax blue-shift were nearly nonexistent. Our findings indicate that the HET-C2 Trp λmax blue-shift is diagnostic for glycolipid binding; whereas the emission intensity decrease reflects higher environmental polarity encountered upon nonspecific interaction with phosphocholine headgroups comprising the membrane interface and specific interaction with the hydrated glycolipid sugar.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glicolipídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Triptofano/fisiologia , Substituição de Aminoácidos , Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Glicolipídeos/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Podospora/genética , Podospora/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Relação Estrutura-Atividade , Triptofano/química , Triptofano/genética
9.
Q Rev Biophys ; 48(3): 281-322, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25797198

RESUMO

Glycolipid transfer proteins (GLTPs) originally were identified as small (~24 kDa), soluble, amphitropic proteins that specifically accelerate the intermembrane transfer of glycolipids. GLTPs and related homologs now are known to adopt a unique, helically dominated, two-layer 'sandwich' architecture defined as the GLTP-fold that provides the structural underpinning for the eukaryotic GLTP superfamily. Recent advances now provide exquisite insights into structural features responsible for lipid headgroup selectivity as well as the adaptability of the hydrophobic compartment for accommodating hydrocarbon chains of differing length and unsaturation. A new understanding of the structural versatility and evolutionary premium placed on the GLTP motif has emerged. Human GLTP-motifs have evolved to function not only as glucosylceramide binding/transferring domains for phosphoinositol 4-phosphate adaptor protein-2 during glycosphingolipid biosynthesis but also as selective binding/transfer proteins for ceramide-1-phosphate. The latter, known as ceramide-1-phosphate transfer protein, recently has been shown to form GLTP-fold while critically regulating Group-IV cytoplasmic phospholipase A2 activity and pro-inflammatory eicosanoid production.


Assuntos
Proteínas de Transporte/metabolismo , Esfingolipídeos/metabolismo , Glicolipídeos/metabolismo , Dobramento de Proteína
10.
Biochim Biophys Acta ; 1831(2): 417-27, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23159414

RESUMO

Phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) plays a key role in glycosphingolipid (GSL) production using its C-terminal domain to transport newly synthesized glucosylceramide away from the cytosol-facing glucosylceramide synthase in the cis-Golgi for further anabolic processing. Structural homology modeling against human glycolipid transfer protein (GLTP) predicts a GLTP-fold for FAPP2 C-terminal domain, but no experimental support exists to warrant inclusion in the GLTP superfamily. Here, the biophysical properties and glycolipid transfer specificity of FAPP2-C-terminal domain have been characterized and compared with other established GLTP-folds. Experimental evidence for a GLTP-fold includes: i) far-UV circular dichroism (CD) showing secondary structure with high alpha-helix content and a low thermally-induced unfolding transition (~41°C); ii) near-UV-CD indicating only subtle tertiary conformational change before/after interaction with membranes containing/lacking glycolipid; iii) Red-shifted tryptophan (Trp) emission wavelength maximum (λ(max)~352nm) for apo-FAPP2-C-terminal domain consistent with surface exposed intrinsic Trp residues; iv) 'signature' GLTP-fold Trp fluorescence response, i.e., intensity decrease (~30%) accompanied by strongly blue-shifted λ(max) (~14nm) upon interaction with membranes containing glycolipid, supporting direct involvement of Trp in glycolipid binding and enabling estimation of partitioning affinities. A structurally-based preference for other simple uncharged GSLs, in addition to glucosylceramide, makes human FAPP2-GLTP more similar to fungal HET-C2 than to plant AtGLTP1 (glucosylceramide-specific) or to broadly GSL-selective human GLTP. These findings along with the distinct mRNA exon/intron organizations originating from single-copy genes on separate human chromosomes suggest adaptive evolutionary divergence by these two GLTP-folds.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Glicoesfingolipídeos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Proteínas de Transporte/química , Dicroísmo Circular , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
11.
Langmuir ; 30(11): 3154-64, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24564829

RESUMO

Phosphatidycholines (PC) with two saturated acyl chains (e.g., dipalmitoyl) mimic natural sphingomyelin (SM) by promoting raft formation in model membranes. However, sphingoid-based lipids, such as SM, rather than saturated-chain PCs have been implicated as key components of lipid rafts in biomembranes. These observations raise questions about the physical packing properties of the phase states that can be formed by these two major plasma membrane lipids with identical phosphocholine headgroups. To investigate, we developed a monolayer platform capable of monitoring changes in surface fluorescence by acquiring multiple spectra during measurement of a lipid force-area isotherm. We relied on the concentration-dependent emission changes of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled PC to detect nanoscale alterations in lipid packing and phase state induced by monolayer lateral compression. The BODIPY-PC probe contained an indacene ring with four symmetrically located methyl (Me) substituents to enhance localization to the lipid hydrocarbon region. Surface fluorescence spectra indicated changes in miscibility even when force-area isotherms showed no deviation from ideal mixing behavior in the surface pressure versus cross-sectional molecular area response. We detected slightly better mixing of Me4-BODIPY-8-PC with the fluid-like, liquid expanded phase of 1-palmitoyl-2-oleoyl-PC compared to N-oleoyl-SM. Remarkably, in the gel-like, liquid condensed phase, Me4-BODIPY-8-PC mixed better with N-palmitoyl-SM than dipalmitoyl-PC, suggesting naturally abundant SMs with saturated acyl chains form gel-like lipid phase(s) with enhanced ability to accommodate deeply embedded components compared to dipalmitoyl-PC gel phase. The findings reveal a fundamental difference in the lateral packing properties of SM and PC that occurs even when their acyl chains match.


Assuntos
Compostos de Boro/química , Nanoestruturas/química , Fosfatidilcolinas/química , Esfingomielinas/química , Espectrometria de Fluorescência
12.
J Lipid Res ; 54(4): 1103-13, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23369752

RESUMO

Among amphitropic proteins, human glycolipid transfer protein (GLTP) forms a structurally-unique fold that translocates on/off membranes to specifically transfer glycolipids. Phosphatidylcholine (PC) bilayers with curvature-induced packing stress stimulate much faster glycolipid intervesicular transfer than nonstressed PC bilayers raising questions about planar cytosol-facing biomembranes being viable sites for GLTP interaction. Herein, GLTP-mediated desorption kinetics of fluorescent glycolipid (tetramethyl-boron dipyrromethene (BODIPY)-label) from lipid monolayers are assessed using a novel microfluidics-based surface balance that monitors lipid lateral packing while simultaneously acquiring surface fluorescence data. At biomembrane-like packing (30-35 mN/m), GLTP uptake of BODIPY-glycolipid from POPC monolayers was nearly nonexistent but could be induced by reducing surface pressure to mirror packing in curvature-stressed bilayers. In contrast, 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) matrices supported robust BODIPY-glycolipid uptake by GLTP at both high and low surface pressures. Unexpectedly, negatively-charged cytosol-facing lipids, i.e., phosphatidic acid and phosphatidylserine, also supported BODIPY-glycolipid uptake by GLTP at high surface pressure. Remarkably, including both 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (5 mol%) and POPE (15 mol%) in POPC synergistically activated GLTP at high surface pressure. Our study shows that matrix lipid headgroup composition, rather than molecular packing per se, is a key regulator of GLTP-fold function while demonstrating the novel capabilities of the microfluidics-based film balance for investigating protein-membrane interfacial interactions.


Assuntos
Proteínas de Transporte/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Humanos , Bicamadas Lipídicas/química , Microfluídica
13.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 4): 603-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23519669

RESUMO

Human glycolipid transfer protein (hsGLTP) forms the prototypical GLTP fold and is characterized by a broad transfer selectivity for glycosphingolipids (GSLs). The GLTP mutation D48V near the `portal entrance' of the glycolipid binding site has recently been shown to enhance selectivity for sulfatides (SFs) containing a long acyl chain. Here, nine novel crystal structures of hsGLTP and the SF-selective mutant complexed with short-acyl-chain monoSF and diSF in different crystal forms are reported in order to elucidate the potential functional roles of lipid-mediated homodimerization. In all crystal forms, the hsGLTP-SF complexes displayed homodimeric structures supported by similarly organized intermolecular interactions. The dimerization interface always involved the lipid sphingosine chain, the protein C-terminus (C-end) and α-helices 6 and 2, but the D48V mutant displayed a `locked' dimer conformation compared with the hinge-like flexibility of wild-type dimers. Differences in contact angles, areas and residues at the dimer interfaces in the `flexible' and `locked' dimers revealed a potentially important role of the dimeric structure in the C-end conformation of hsGLTP and in the precise positioning of the key residue of the glycolipid recognition centre, His140. ΔY207 and ΔC-end deletion mutants, in which the C-end is shifted or truncated, showed an almost complete loss of transfer activity. The new structural insights suggest that ligand-dependent reversible dimerization plays a role in the function of human GLTP.


Assuntos
Proteínas de Transporte/química , Metabolismo dos Lipídeos/fisiologia , Multimerização Proteica/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Cristalografia por Raios X , Glicoesfingolipídeos/química , Glicoesfingolipídeos/metabolismo , Glicoesfingolipídeos/fisiologia , Humanos , Ligantes , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
14.
J Biol Chem ; 286(2): 1301-11, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20974858

RESUMO

Glycolipid transfer protein (GLTP) accelerates glycolipid intermembrane transfer via a unique lipid transfer/binding fold (GLTP fold) that defines the GLTP superfamily and is the prototype for functional GLTP-like domains in larger proteins, i.e. FAPP2. Human GLTP is encoded by the single-copy GLTP gene on chromosome 12 (12q24.11 locus), but regulation of GLTP gene expression remains completely unexplored. Herein, the ability of glycosphingolipids (and their sphingolipid metabolites) to regulate the transcriptional expression of GLTP via its promoter has been evaluated. Using luciferase and GFP reporters in concert with deletion mutants, the constitutive and basal (225 bp; ∼78% G+C) human GLTP promoters have been defined along with adjacent regulatory elements. Despite high G+C content, translational regulation was not evident by the mammalian target of rapamycin pathway. Four GC-boxes were shown to be functional Sp1/Sp3 transcription factor binding sites. Mutation of one GC-box was particularly detrimental to GLTP transcriptional activity. Sp1/Sp3 RNA silencing and mithramycin A treatment significantly inhibited GLTP promoter activity. Among tested sphingolipid analogs of glucosylceramide, sulfatide, ganglioside GM1, ceramide 1-phosphate, sphingosine 1-phosphate, dihydroceramide, sphingosine, only ceramide, a nonglycosylated precursor metabolite unable to bind to GLTP protein, induced GLTP promoter activity and raised transcript levels in vivo. Ceramide treatment partially blocked promoter activity decreases induced by Sp1/Sp3 knockdown. Ceramide treatment also altered the in vivo binding affinity of Sp1 and Sp3 for the GLTP promoter and decreased Sp3 acetylation. This study represents the first characterization of any Gltp gene promoter and links human GLTP expression to sphingolipid homeostasis through ceramide.


Assuntos
Proteínas de Transporte/genética , Ceramidas/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Transcrição Gênica/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Neoplasias da Mama , Feminino , Inativação Gênica , Células HEK293 , Células HeLa , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Sítio de Iniciação de Transcrição/fisiologia , Regulação para Cima/fisiologia
15.
Biochemistry ; 50(23): 5163-71, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21553912

RESUMO

The glycolipid transfer protein (GLTP) superfamily is defined by the human GLTP fold that represents a novel motif for lipid binding and transfer and for reversible interaction with membranes, i.e., peripheral amphitropic proteins. Despite limited sequence homology with human GLTP, we recently showed that HET-C2 GLTP of Podospora anserina is organized conformationally as a GLTP fold. Currently, insights into the folding stability and conformational states that regulate GLTP fold activity are almost nonexistent. To gain such insights into the disulfide-less GLTP fold, we investigated the effect of a change in pH on the fungal HET-C2 GLTP fold by taking advantage of its two tryptophans and four tyrosines (compared to three tryptophans and 10 tyrosines in human GLTP). pH-induced conformational alterations were determined by changes in (i) intrinsic tryptophan fluorescence (intensity, emission wavelength maximum, and anisotropy), (ii) circular dichroism over the near-UV and far-UV ranges, including thermal stability profiles of the derivatized molar ellipticity at 222 nm, (iii) fluorescence properties of 1-anilinonaphthalene-8-sulfonic acid, and (iv) glycolipid intermembrane transfer activity monitored by Förster resonance energy transfer. Analyses of our recently determined crystallographic structure of HET-C2 (1.9 Å) allowed identification of side chain electrostatic interactions that contribute to HET-C2 GLTP fold stability and can be altered by a change in pH. Side chain interactions include numerous salt bridges and interchain cation-π interactions, but not intramolecular disulfide bridges. Histidine residues are especially important for stabilizing the local positioning of the two tryptophan residues and the conformation of adjacent chains. Induction of a low-pH-induced, molten globule-like state inhibited glycolipid intermembrane transfer by the HET-C2 GLTP fold.


Assuntos
Proteínas de Transporte/química , Proteínas Fúngicas/química , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Glicolipídeos/química , Glicolipídeos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Dobramento de Proteína , Triptofano/química , Triptofano/metabolismo
16.
J Biol Chem ; 285(17): 13066-78, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20164530

RESUMO

HET-C2 is a fungal protein that transfers glycosphingolipids between membranes and has limited sequence homology with human glycolipid transfer protein (GLTP). The human GLTP fold is unique among lipid binding/transfer proteins, defining the GLTP superfamily. Herein, GLTP fold formation by HET-C2, its glycolipid transfer specificity, and the functional role(s) of its two Trp residues have been investigated. X-ray diffraction (1.9 A) revealed a GLTP fold with all key sugar headgroup recognition residues (Asp(66), Asn(70), Lys(73), Trp(109), and His(147)) conserved and properly oriented for glycolipid binding. Far-UV CD showed secondary structure dominated by alpha-helices and a cooperative thermal unfolding transition of 49 degrees C, features consistent with a GLTP fold. Environmentally induced optical activity of Trp/Tyr/Phe (2:4:12) detected by near-UV CD was unaffected by membranes containing glycolipid but was slightly altered by membranes lacking glycolipid. Trp fluorescence was maximal at approximately 355 nm and accessible to aqueous quenchers, indicating free exposure to the aqueous milieu and consistent with surface localization of the two Trps. Interaction with membranes lacking glycolipid triggered significant decreases in Trp emission intensity but lesser than decreases induced by membranes containing glycolipid. Binding of glycolipid (confirmed by electrospray injection mass spectrometry) resulted in a blue-shifted emission wavelength maximum (approximately 6 nm) permitting determination of binding affinities. The unique positioning of Trp(208) at the HET-C2 C terminus revealed membrane-induced conformational changes that precede glycolipid uptake, whereas key differences in residues of the sugar headgroup recognition center accounted for altered glycolipid specificity and suggested evolutionary adaptation for the simpler glycosphingolipid compositions of filamentous fungi.


Assuntos
Proteínas de Transporte/química , Membrana Celular/química , Proteínas Fúngicas/química , Glicolipídeos/química , Dobramento de Proteína , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Fluorescência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicolipídeos/metabolismo , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Triptofano/química , Triptofano/genética , Triptofano/metabolismo , Difração de Raios X
17.
Bio Protoc ; 11(24): e4271, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35087930

RESUMO

Various methods have been developed to generate phosphoglyceride liposomes. Approaches resulting in homogeneous populations of unilamellar bilayer vesicles are generally preferred to mimic various cell membrane situations, as well as to optimize aqueous solute trapping efficiency using the least amount of lipid for biotechnological purposes. Most are time-consuming, often tedious, or require specialized equipment, and produce vesicles with limited shelf-life at room temperature or in cold storage. Herein, we describe a straightforward approach that avoids the preceding complications and streamlines the construction of unilamellar bilayer vesicles from 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC)/dihexanoyl phosphatidylcholine (DHPC) bicelle mixtures at room temperature. The resulting vesicles are small (32-36 nm diameter), unilamellar, bilayer vesicles that are homogeneous, stable, and resistant to freeze-thaw alterations. Graphic abstract: Cryo-EM of POPC vesicles formed by dilution of 0.5 q-value POPC/DHPC bicelle mix.

18.
Biophys J ; 99(8): 2626-35, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20959104

RESUMO

Human glycolipid transfer protein (GLTP) serves as the GLTP-fold prototype, a novel, to our knowledge, peripheral amphitropic fold and structurally unique lipid binding motif that defines the GLTP superfamily. Despite conservation of all three intrinsic Trps in vertebrate GLTPs, the Trp functional role(s) remains unclear. Herein, the issue is addressed using circular dichroism and fluorescence spectroscopy along with an atypical Trp point mutation strategy. Far-ultraviolet and near-ultraviolet circular dichroism spectroscopic analyses showed that W96F-W142Y-GLTP and W96Y-GLTP retain their native conformation and stability, whereas W85Y-W96F-GLTP is slightly altered, in agreement with relative glycolipid transfer activities of >90%, ∼85%, and ∼45%, respectively. In silico three-dimensional modeling and acrylamide quenching of Trp fluorescence supported a nativelike folding conformation. With the Trp96-less mutants, changes in emission intensity, wavelength maximum, lifetime, and time-resolved anisotropy decay induced by phosphoglyceride membranes lacking or containing glycolipid and by excitation at different wavelengths along the absorption-spectrum red edge indicated differing functions for W142 and W85. The data suggest that W142 acts as a shallow-penetration anchor during docking with membrane interfaces, whereas the buried W85 indole helps maintain proper folding and possibly regulates membrane-induced transitioning to a glycolipid-acquiring conformation. The findings illustrate remarkable versatility for Trp, providing three distinct intramolecular functions in the novel amphitropic GLTP fold.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Triptofano , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Dicroísmo Circular , Polarização de Fluorescência , Glicolipídeos/metabolismo , Humanos , Modelos Moleculares , Mutagênese , Mutação , Estrutura Terciária de Proteína , Solubilidade , Espectrometria de Fluorescência , Fatores de Tempo
19.
Nature ; 430(7003): 1048-53, 2004 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-15329726

RESUMO

Lipid transfer proteins are important in membrane vesicle biogenesis and trafficking, signal transduction and immunological presentation processes. The conserved and ubiquitous mammalian glycolipid transfer proteins (GLTPs) serve as potential regulators of cell processes mediated by glycosphingolipids, ranging from differentiation and proliferation to invasive adhesion, neurodegeneration and apoptosis. Here we report crystal structures of apo-GLTP (1.65 A resolution) and lactosylceramide-bound (1.95 A) GLTP, in which the bound glycosphingolipid is sandwiched, after adaptive recognition, within a previously unknown two-layer all-alpha-helical topology. Glycosphingolipid binding specificity is achieved through recognition and anchoring of the sugar-amide headgroup to the GLTP recognition centre by hydrogen bond networks and hydrophobic contacts, and encapsulation of both lipid chains, in a precisely oriented manner within a 'moulded-to-fit' hydrophobic tunnel. A cleft-like conformational gating mechanism, involving two interhelical loops and one alpha-helix of GLTP, could enable the glycolipid chains to enter and leave the tunnel in the membrane-associated state. Mutation and functional analyses of residues in the glycolipid recognition centre and within the hydrophobic tunnel support a framework for understanding how GLTPs acquire and release glycosphingolipids during lipid intermembrane transfer and presentation processes.


Assuntos
Antígenos CD/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Lactosilceramidas/metabolismo , Antígenos CD/química , Apoproteínas/genética , Apoptose , Proteínas de Transporte/genética , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lactosilceramidas/química , Modelos Moleculares , Mutação/genética , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
20.
Prog Lipid Res ; 78: 101031, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32339554

RESUMO

Glycolipid transfer proteins (GLTPs) were first identified over three decades ago as ~24kDa, soluble, amphitropic proteins that specifically accelerate the intermembrane transfer of glycolipids. Upon discovery that GLTPs use a unique, all-α-helical, two-layer 'sandwich' architecture (GLTP-fold) to bind glycosphingolipids (GSLs), a new protein superfamily was born. Structure/function studies have provided exquisite insights defining features responsible for lipid headgroup selectivity and hydrophobic 'pocket' adaptability for accommodating hydrocarbon chains of differing length and unsaturation. In humans, evolutionarily-modified GLTP-folds have been identified with altered sphingolipid specificity, e. g. ceramide-1-phosphate transfer protein (CPTP), phosphatidylinositol 4-phosphate adaptor protein-2 (FAPP2) which harbors a GLTP-domain and GLTPD2. Despite the wealth of structural data (>40 Protein Data Bank deposits), insights into the in vivo functional roles of GLTP superfamily members have emerged slowly. In this review, recent advances are presented and discussed implicating human GLTP superfamily members as important regulators of: i) pro-inflammatory eicosanoid production associated with Group-IV cytoplasmic phospholipase A2; ii) autophagy and inflammasome assembly that drive surveillance cell release of interleukin-1ß and interleukin-18 inflammatory cytokines; iii) cell cycle arrest and necroptosis induction in certain colon cancer cell lines. The effects exerted by GLTP superfamily members appear linked to their ability to regulate sphingolipid homeostasis by acting in either transporter and/or sensor capacities. These timely findings are opening new avenues for future cross-disciplinary, translational medical research involving GLTP-fold proteins in human health and disease. Such avenues include targeted regulation of specific GLTP superfamily members to alter sphingolipid levels as a therapeutic means for combating viral infection, neurodegenerative conditions and circumventing chemo-resistance during cancer treatment.


Assuntos
Autofagia , Proteínas de Transporte/metabolismo , Morte Celular , Inflamação/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA