Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(4): 2142-2151, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651186

RESUMO

A significant barrier to biological applications of DNA structures is their instability to nucleases. UV-mediated thymine dimerization can crosslink and stabilize DNA nanostructures, but its effect on DNA strand hybridization fidelity and function is unclear. In this work, we first compare a number of methods for DNA irradiation with different wavelengths of light and different photosensitizers. We demonstrate that all approaches can achieve nuclease protection; however, the levels of DNA off-target crosslinking and damage vary. We then describe mild irradiation conditions intended to safeguard DNA against nuclease degradation. We demonstrate up to 25× increase in serum stability while minimizing off-target damage and maintaining functions such as hybridization efficiency, gene silencing, aptamer binding, and DNA nanostructure formation. Our methodology requires no complex instruments beyond a UV light source and no synthetic modification of the DNA itself, allowing for applications in numerous areas of nucleic acid therapy and nanotechnology.


Assuntos
DNA , Nanoestruturas , DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Oligonucleotídeos/química , Hibridização de Ácido Nucleico , Conformação de Ácido Nucleico
2.
Bioorg Med Chem ; 28(1): 115176, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31753799

RESUMO

Epigenetic regulation of gene expression is in part controlled by post-translational modifications on histone proteins. Histone methylation is a key epigenetic mark that controls gene transcription and repression. There are five human polycomb paralog proteins (Cbx2/4/6/7/8) that use their chromodomains to recognize trimethylated lysine 27 on histone 3 (H3K27me3). Recognition of the methyllysine side chain is achieved through multiple cation-pi interactions within an 'aromatic cage' motif. Despite high structural similarity within the chromodomains of this protein family, they each have unique functional roles and are linked to different cancers. Selective inhibition of different CBX proteins is desirable for both fundamental studies and potential therapeutic applications. We report here on a series of peptidic inhibitors that target certain polycomb paralogs. We have identified peptidic scaffolds with sub-micromolar potency, and will report examples that are pan-specific and that are partially selective for individual members within the family. These results highlight important structure-activity relationships that allow for differential binding to be achieved through interactions outside of the methyllysine-binding aromatic cage motif.


Assuntos
Peptídeos/farmacologia , Proteínas do Grupo Polycomb/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Proteínas do Grupo Polycomb/genética , Relação Estrutura-Atividade
3.
ChemMedChem ; 16(19): 3027-3034, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34174168

RESUMO

Methyllysine reader proteins bind to methylated lysine residues and alter gene transcription by changing either the compaction state of chromatin or by the recruitment of other multiprotein complexes. The polycomb paralog family of methyllysine readers bind to trimethylated lysine on the tail of histone 3 (H3) via a highly conserved aromatic cage located in their chromodomains. Each of the polycomb paralogs are implicated in several disease states. CBX6 and CBX8 are members of the polycomb paralog family with two structurally similar chromodomains. By exploring the structure-activity relationships of a previously reported CBX6 inhibitor we have discovered more potent and cell permeable analogs. Our current report includes potent, dual-selective inhibitors of CBX6 and CBX8. We have shown that the -2 position in our scaffold is an important residue for selectivity amongst the polycomb paralogs. Preliminary cell-based studies show that the new inhibitors impact cell proliferation in a rhabdoid tumor cell line.


Assuntos
Antineoplásicos/farmacologia , Peptídeos/farmacologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Proteínas do Grupo Polycomb/antagonistas & inibidores , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Peptídeos/química , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Relação Estrutura-Atividade
4.
ChemMedChem ; 14(15): 1444-1456, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31254321

RESUMO

Chromobox homolog 7 (Cbx7) is an epigenetic modulator that is an important driver of multiple cancers. It is a methyl reader protein that operates by recognizing and binding to methylated lysine residues on specific partners. Herein we report our efforts to create low-molecular-weight inhibitors of Cbx7 by making rational structural adaptations to inhibitors of a different methyl reader protein, L3MBTL1, inhibitors that had previously been reported to be inactive against Cbx7. We evaluated each new inhibitor for Cbx7 inhibition by fluorescence polarization assay, and also confirmed the binding of selected inhibitors to Cbx7 by saturation-transfer difference NMR spectroscopy. This work identified multiple small-molecule inhibitors with modest (IC50 : 257-500 µm) potency.


Assuntos
Inibidores Enzimáticos/síntese química , Lisina/química , Niacinamida/síntese química , Complexo Repressor Polycomb 1/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Sulfonamidas/síntese química , Proteínas Supressoras de Tumor/antagonistas & inibidores , Sequência de Aminoácidos , Inibidores Enzimáticos/metabolismo , Humanos , Metilação , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA