Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 39(35): 6978-6991, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31285301

RESUMO

Time locking between neocortical sleep slow oscillations, thalamo-cortical spindles, and hippocampal sharp-wave ripples has convincingly been shown to be a key element of systems consolidation. Here we investigate the role of monosynaptic projections from ventral/intermediate hippocampus to medial prefrontal cortex (mPFC) in sleep-dependent memory consolidation in male mice. Following acquisition learning in the Barnes maze, we optogenetically silenced the axonal terminals of hippocampal projections within mPFC during slow-wave sleep. This silencing during SWS selectively impaired recent but not remote memory in the absence of effects on error rate and escape latencies. Furthermore, it prevented the development of the most efficient search strategy and sleep spindle time-locking to slow oscillation. An increase in post-learning sleep sharp-wave ripple (SPWR) density and reduced time locking of learning-associated SPWR activity to sleep spindles may be a less specific response. Our results demonstrate that monosynaptic projections from hippocampus to mPFC contribute to sleep-dependent memory consolidation, potentially by affecting the temporal coupling of sleep-associated electrophysiological events.SIGNIFICANCE STATEMENT Convincing evidence supports the role of slow-wave sleep (SWS), and the relevance of close temporal coupling of neuronal activity between brain regions for systems consolidation. Less attention has been paid so far to the specific neuronal pathways underlying these processes. Here, we optogenetically silenced the direct monosynaptic projection from ventral/intermediate hippocampus (HC) to medial prefrontal cortex (mPFC) during SWS in male mice following repeated learning trials in a weakly aversive spatial task. Our results confirm the concept that the monosynaptic projection between HC and mPFC contributes to memory consolidation and support an important functional role of this pathway in shaping the temporal precision among sleep-associated electrophysiological events.


Assuntos
Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Consolidação da Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Memória Espacial/fisiologia , Animais , Eletroencefalografia , Masculino , Camundongos , Vias Neurais/fisiologia , Neurônios/fisiologia , Optogenética , Sono/fisiologia
2.
IEEE Trans Pattern Anal Mach Intell ; 41(5): 1102-1115, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29994022

RESUMO

We present a novel framework for rigid point cloud registration. Our approach is based on the principles of mechanics and thermodynamics. We solve the registration problem by assuming point clouds as rigid bodies consisting of particles. Forces can be applied between both particle systems so that they attract or repel each other. These forces are used to cause rigid-body motion of one particle system toward the other, until both are aligned. The framework supports physics-based registration processes with arbitrary driving forces, depending on the desired behaviour. Additionally, the approach handles feature-enhanced point clouds, e.g., by colours or intensity values. Our framework is freely accessible for download. In contrast to already existing algorithms, our contribution is to precisely register high-resolution point clouds with nearly constant computational effort and without the need for pre-processing, sub-sampling or pre-alignment. At the same time, the quality is up to 28 percent higher than for state-of-the-art algorithms and up to 49 percent higher when considering feature-enhanced point clouds. Even in the presence of noise, our registration approach is one of the most robust, on par with state-of-the-art implementations.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 883-886, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440532

RESUMO

Ultrasound (US) guidance is a rapidly growing area in image-guided radiotherapy. For motion compensation, the therapy target needs to be visualized with the US probe to continuously determine its position and adapt for shifts. While US has obvious benefits such as real-time capability and proven safety, one of the main drawbacks to date is its user dependency - high quality results require long years of clinical experience. To provide positioning assistance for the setup of US equipment by non-experts, we developed a visual guidance tool combining real-time US volume and CT visualization in a geometrically calibrated setup. By using a 4D US station with real-time data access and an optical tracking system, we achieved a calibration accuracy of 1.2 mm and a mean 2D contour distance of 1.7 mm between organ boundaries identified in US and CT. With this low calibration error as well as the good visual alignment of the structures, the developed probe positioning tool could be a valuable aid for ultrasound-guided radiotherapy and other interventions by guiding the user to a suitable acoustic window while potentially improving setup reproducibility.


Assuntos
Imageamento Tridimensional , Radioterapia Guiada por Imagem , Ultrassonografia , Movimento (Física) , Reprodutibilidade dos Testes
4.
Int J Comput Assist Radiol Surg ; 12(1): 149-159, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27406743

RESUMO

PURPOSE: Advances in radiation therapy delivery systems have enabled motion compensated SBRT of the prostate. A remaining challenge is the integration of fast, non-ionizing volumetric imaging. Recently, robotic ultrasound has been proposed as an intra-fraction image modality. We study the impact of integrating a light-weight robotic arm carrying an ultrasound probe with the CyberKnife system. Particularly, we analyze the effect of different robot poses on the plan quality. METHODS: A method to detect the collision of beams with the robot or the transducer was developed and integrated into our treatment planning system. A safety margin accounts for beam motion and uncertainties. Using strict dose bounds and the objective to maximize target coverage, we generated a total of 7650 treatment plans for five different prostate cases. For each case, ten different poses of the ultrasound robot and transducer were considered. The effect of different sets of beam source positions and different motion margins ranging from 5 to 50 mm was analyzed. RESULTS: Compared to reference plans without the ultrasound robot, the coverage typically drops for all poses. Depending on the patient, the robot pose, and the motion margin, the reduction in coverage may be up to 50 % points. However, for all patient cases, there exist poses for which the loss in coverage was below 1 % point for motion margins of up to 20 mm. In general, there is a positive correlation between the number of treatment beams and the coverage. CONCLUSION: While the blocking of beam directions has a negative effect on the plan quality, the results indicate that a careful choice of the ultrasound robot's pose and a large solid angle covered by beam starting positions can offset this effect. Identifying robot poses that yield acceptable plan quality and allow for intra-fraction ultrasound image guidance, therefore, appears feasible.


Assuntos
Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Robótica/métodos , Ultrassonografia/métodos , Estudos de Viabilidade , Humanos , Masculino , Movimento (Física) , Neoplasias da Próstata/diagnóstico por imagem , Radioterapia Guiada por Imagem
5.
Int J Comput Assist Radiol Surg ; 11(4): 569-79, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26122931

RESUMO

PURPOSE: Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy. METHODS: We use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots. RESULTS: We confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary.


Assuntos
Algoritmos , Diagnóstico por Imagem/instrumentação , Imageamento Tridimensional/instrumentação , Modelos Teóricos , Dispositivos Ópticos , Desenho de Equipamento , Humanos , Distribuição Normal
6.
Med Phys ; 43(10): 5695, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27782689

RESUMO

PURPOSE: With the trend in radiotherapy moving toward dose escalation and hypofractionation, the need for highly accurate targeting increases. While MLC tracking is already being successfully used for motion compensation of moving targets in the prostate, current real-time target localization methods rely on repeated x-ray imaging and implanted fiducial markers or electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging can yield volumetric data in real-time (3D + time = 4D) without ionizing radiation. The authors report the first results of combining these promising techniques-online 4D ultrasound guidance and MLC tracking-in a phantom. METHODS: A software framework for real-time target localization was installed directly on a 4D ultrasound station and used to detect a 2 mm spherical lead marker inside a water tank. The lead marker was rigidly attached to a motion stage programmed to reproduce nine characteristic tumor trajectories chosen from large databases (five prostate, four lung). The 3D marker position detected by ultrasound was transferred to a computer program for MLC tracking at a rate of 21.3 Hz and used for real-time MLC aperture adaption on a conventional linear accelerator. The tracking system latency was measured using sinusoidal trajectories and compensated for by applying a kernel density prediction algorithm for the lung traces. To measure geometric accuracy, static anterior and lateral conformal fields as well as a 358° arc with a 10 cm circular aperture were delivered for each trajectory. The two-dimensional (2D) geometric tracking error was measured as the difference between marker position and MLC aperture center in continuously acquired portal images. For dosimetric evaluation, VMAT treatment plans with high and low modulation were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using 3%/3 mm and 2%/2 mm γ-tests. RESULTS: The overall tracking system latency was 172 ms. The mean 2D root-mean-square tracking error was 1.03 mm (0.80 mm prostate, 1.31 mm lung). MLC tracking improved the dose delivery in all cases with an overall reduction in the γ-failure rate of 91.2% (3%/3 mm) and 89.9% (2%/2 mm) compared to no motion compensation. Low modulation VMAT plans had no (3%/3 mm) or minimal (2%/2 mm) residual γ-failures while tracking reduced the γ-failure rate from 17.4% to 2.8% (3%/3 mm) and from 33.9% to 6.5% (2%/2 mm) for plans with high modulation. CONCLUSIONS: Real-time 4D ultrasound tracking was successfully integrated with online MLC tracking for the first time. The developed framework showed an accuracy and latency comparable with other MLC tracking methods while holding the potential to measure and adapt to target motion, including rotation and deformation, noninvasively.


Assuntos
Imageamento Tridimensional , Movimento , Radioterapia Guiada por Imagem/métodos , Estudos de Viabilidade , Humanos , Radiometria , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/instrumentação , Fatores de Tempo , Ultrassonografia
7.
Int J Radiat Oncol Biol Phys ; 95(2): 810-7, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27020107

RESUMO

PURPOSE: To support surface registration in cranial radiation therapy by structural information. The risk for spatial ambiguities is minimized by using tissue thickness variations predicted from backscattered near-infrared (NIR) light from the forehead. METHODS AND MATERIALS: In a pilot study we recorded NIR surface scans by laser triangulation from 30 volunteers of different skin type. A ground truth for the soft-tissue thickness was segmented from MR scans. After initially matching the NIR scans to the MR reference, Gaussian processes were trained to predict tissue thicknesses from NIR backscatter. Moreover, motion starting from this initial registration was simulated by 5000 random transformations of the NIR scan away from the MR reference. Re-registration to the MR scan was compared with and without tissue thickness support. RESULTS: By adding prior knowledge to the backscatter features, such as incident angle and neighborhood information in the scanning grid, we showed that tissue thickness can be predicted with mean errors of <0.2 mm, irrespective of the skin type. With this additional information, the average registration error improved from 3.4 mm to 0.48 mm by a factor of 7. Misalignments of more than 1 mm were almost thoroughly (98.9%) pushed below 1 mm. CONCLUSIONS: For almost all cases tissue-enhanced matching achieved better results than purely spatial registration. Ambiguities can be minimized if the cutaneous structures do not agree. This valuable support for surface registration increases tracking robustness and avoids misalignment of tumor targets far from the registration site.


Assuntos
Irradiação Craniana/métodos , Adulto , Idoso , Feminino , Cabeça , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Planejamento da Radioterapia Assistida por Computador , Espalhamento de Radiação , Pele/anatomia & histologia , Espectroscopia de Luz Próxima ao Infravermelho
8.
Med Phys ; 43(11): 5951, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27806580

RESUMO

PURPOSE: To present a system for robotic 4D ultrasound (US) imaging concurrent with radiotherapy beam delivery and estimate the proportion of liver stereotactic ablative body radiotherapy (SABR) cases in which robotic US image guidance can be deployed without interfering with clinically used VMAT beam configurations. METHODS: The image guidance hardware comprises a 4D US machine, an optical tracking system for measuring US probe pose, and a custom-designed robot for acquiring hands-free US volumes. In software, a simulation environment incorporating the LINAC, couch, planning CT, and robotic US guidance hardware was developed. Placement of the robotic US hardware was guided by a target visibility map rendered on the CT surface by using the planning CT to simulate US propagation. The visibility map was validated in a prostate phantom and evaluated in patients by capturing live US from imaging positions suggested by the visibility map. In 20 liver SABR patients treated with VMAT, the simulation environment was used to virtually place the robotic hardware and US probe. Imaging targets were either planning target volumes (PTVs, range 5.9-679.5 ml) or gross tumor volumes (GTVs, range 0.9-343.4 ml). Presence or absence of mechanical interference with LINAC, couch, and patient body as well as interferences with treated beams was recorded. RESULTS: For PTV targets, robotic US guidance without mechanical interference was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85%, respectively. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of noninterfering imaging positions. The robotic US imaging system was deployed in two liver SABR patients during CT simulation with successful acquisition of 4D US sequences in different imaging positions. CONCLUSIONS: This study indicates that for VMAT liver SABR, robotic US imaging of a relevant internal target may be possible in 85% of the cases while using treatment plans currently deployed in the clinic. With beam replanning to account for the presence of robotic US guidance, intrafractional US may be an option for 95% of the liver SABR cases.


Assuntos
Fracionamento da Dose de Radiação , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Radiocirurgia/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Robótica , Falha de Equipamento , Humanos , Radioterapia de Intensidade Modulada , Ultrassonografia
9.
Cureus ; 8(7): e705, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27588226

RESUMO

PURPOSE: Robotic guided stereotactic radiosurgery has recently been investigated for the treatment of atrial fibrillation (AF). Before moving into human treatments, multiple implications for treatment planning given a potential target tracking approach have to be considered. MATERIALS & METHODS: Theoretical AF radiosurgery treatment plans for twenty-four patients were generated for baseline comparison. Eighteen patients were investigated under ideal tracking conditions, twelve patients under regional dose rate (RDR = applied dose over a certain time window) optimized conditions (beam delivery sequence sorting according to regional beam targeting), four patients under ultrasound tracking conditions (beam block of the ultrasound probe) and four patients with temporary single fiducial tracking conditions (differential surrogate-to-target respiratory and cardiac motion). RESULTS: With currently known guidelines on dose limitations of critical structures, treatment planning for AF radiosurgery with 25 Gy under ideal tracking conditions with a 3 mm safety margin may only be feasible in less than 40% of the patients due to the unfavorable esophagus and bronchial tree location relative to the left atrial antrum (target area). Beam delivery sequence sorting showed a large increase in RDR coverage (% of voxels having a larger dose rate for a given time window) of 10.8-92.4% (median, 38.0%) for a 40-50 min time window, which may be significant for non-malignant targets. For ultrasound tracking, blocking beams through the ultrasound probe was found to have no visible impact on plan quality given previous optimal ultrasound window estimation for the planning CT. For fiducial tracking in the right atrial septum, the differential motion may reduce target coverage by up to -24.9% which could be reduced to a median of -0.8% (maximum, -12.0%) by using 4D dose optimization. The cardiac motion was also found to have an impact on the dose distribution, at the anterior left atrial wall; however, the results need to be verified. CONCLUSION: Robotic AF radiosurgery with 25 Gy may be feasible in a subgroup of patients under ideal tracking conditions. Ultrasound tracking was found to have the lowest impact on treatment planning and given its real-time imaging capability should be considered for AF robotic radiosurgery. Nevertheless, advanced treatment planning using RDR or 4D respiratory and cardiac dose optimization may be still advised despite using ideal tracking methods.

10.
Cureus ; 7(1): e239, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26180663

RESUMO

This work presents a new method for the accurate estimation of soft tissue thickness based on near infrared (NIR) laser measurements. By using this estimation, our goal is to develop an improved non-invasive marker-less optical tracking system for cranial radiation therapy. Results are presented for three subjects and reveal an RMS error of less than 0.34 mm.

11.
Med Phys ; 41(8): 082701, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25086557

RESUMO

PURPOSE: The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. METHODS: The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. RESULTS: The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. CONCLUSIONS: This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be used for high-accuracy tracking of objects, meeting the strict requirements of intracranial radiosurgery.


Assuntos
Lasers , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Calibragem , Desenho de Equipamento , Cabeça/cirurgia , Humanos , Análise dos Mínimos Quadrados , Modelos Lineares , Dinâmica não Linear , Radiocirurgia/instrumentação , Robótica , Cirurgia Assistida por Computador/instrumentação
12.
Artigo em Inglês | MEDLINE | ID: mdl-25570648

RESUMO

Marker-less optical head-tracking constitutes a comfortable alternative with no exposure to radiation for realtime monitoring in radiation therapy. Supporting information such as tissue thickness has the potential to improve spatial tracking accuracy. Here we study how accurate tissue thickness can be estimated from the near-infrared (NIR) backscatter obtained from laser scans. In a case study, optical data was recorded with a galvanometric laser scanner from three subjects. A tissue ground truth from MRI was robustly matched via customized bite blocks. We show that Gaussian Processes accurately model the relationship between NIR features and tissue thickness. They were able to predict the tissue thickness with less than 0.5 mm root mean square error. Individual scaling factors for all features and an additional incident angle feature had positive effects on this performance.


Assuntos
Cabeça/diagnóstico por imagem , Lasers , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética , Distribuição Normal , Radiografia , Espectroscopia de Luz Próxima ao Infravermelho
13.
Int J Radiat Oncol Biol Phys ; 89(3): 590-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24751407

RESUMO

PURPOSE: To perform a proof-of-principle dose-escalation study to radiosurgically induce scarring in cardiac muscle tissue to block veno-atrial electrical connections at the pulmonary vein antrum, similar to catheter ablation. METHODS AND MATERIALS: Nine mini-pigs underwent pretreatment magnetic resonance imaging (MRI) evaluation of heart function and electrophysiology assessment by catheter measurements in the right superior pulmonary vein (RSPV). Immediately after examination, radiosurgery with randomized single-fraction doses of 0 and 17.5-35 Gy in 2.5-Gy steps were delivered to the RSPV antrum (target volume 5-8 cm(3)). MRI and electrophysiology were repeated 6 months after therapy, followed by histopathologic examination. RESULTS: Transmural scarring of cardiac muscle tissue was noted with doses ≥32.5 Gy. However, complete circumferential scarring of the RSPV was not achieved. Logistic regressions showed that extent and intensity of fibrosis significantly increased with dose. The 50% effective dose for intense fibrosis was 31.3 Gy (odds ratio 2.47/Gy, P<.01). Heart function was not affected, as verified by MRI and electrocardiogram evaluation. Adjacent critical structures were not damaged, as verified by pathology, demonstrating the short-term safety of small-volume cardiac radiosurgery with doses up to 35 Gy. CONCLUSIONS: Radiosurgery with doses >32.5 Gy in the healthy pig heart can induce circumscribed scars at the RSPV antrum noninvasively, mimicking the effect of catheter ablation. In our study we established a significant dose-response relationship for cardiac radiosurgery. The long-term effects and toxicity of such high radiation doses need further investigation in the pursuit of cardiac radiosurgery for noninvasive treatment of atrial fibrillation.


Assuntos
Cicatriz/etiologia , Coração/efeitos da radiação , Veias Pulmonares/efeitos da radiação , Radiocirurgia/métodos , Animais , Cicatriz/patologia , Cicatriz/fisiopatologia , Eletrocardiografia , Feminino , Fibrose , Coração/fisiopatologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Miocárdio/patologia , Órgãos em Risco/efeitos da radiação , Radiocirurgia/efeitos adversos , Dosagem Radioterapêutica , Suínos
14.
Int J Comput Assist Radiol Surg ; 8(3): 429-36, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23001337

RESUMO

PURPOSE: Most medical robotic systems require direct interaction or contact with the robot. Force-Torque (FT) sensors can easily be mounted to the robot to control the contact pressure. However, evaluation is often done in software, which leads to latencies. METHODS: To overcome that, we developed an independent safety system, named FTA sensor, which is based on an FT sensor and an accelerometer. An embedded system (ES) runs a real-time monitoring system for continuously checking of the readings. In case of a collision or error, it instantaneously stops the robot via the robot's external emergency stop. RESULTS: We found that the ES implementing the FTA sensor has a maximum latency of [Formula: see text] ms to trigger the robot's emergency stop. For the standard settings in the application of robotized transcranial magnetic stimulation, the robot will stop after at most 4 mm. CONCLUSION: Therefore, it works as an independent safety layer preventing patient and/or operator from serious harm.


Assuntos
Erros Médicos/prevenção & controle , Monitorização Intraoperatória/instrumentação , Robótica , Cirurgia Assistida por Computador/instrumentação , Transdutores de Pressão , Interface Usuário-Computador , Aceleração , Algoritmos , Desenho de Equipamento , Humanos , Modelos Biológicos , Torque
15.
Biomed Opt Express ; 4(7): 1176-87, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23847741

RESUMO

Immobilization and marker-based motion tracking in radiation therapy often cause decreased patient comfort. However, the more comfortable alternative of optical surface tracking is highly inaccurate due to missing point-to-point correspondences between subsequent point clouds as well as elastic deformation of soft tissue. In this study, we present a proof of concept for measuring subcutaneous features with a laser scanner setup focusing on the skin thickness as additional input for high accuracy optical surface tracking. Using Monte-Carlo simulations for multi-layered tissue, we show that informative features can be extracted from the simulated tissue reflection by integrating intensities within concentric ROIs around the laser spot center. Training a regression model with a simulated data set identifies patterns that allow for predicting skin thickness with a root mean square error of down to 18 µm. Different approaches to compensate for varying observation angles were shown to yield errors still below 90 µm. Finally, this initial study provides a very promising proof of concept and encourages research towards a practical prototype.

16.
Artigo em Inglês | MEDLINE | ID: mdl-24111026

RESUMO

In modern robotic radiotherapy, precise radiation of moving tumors is possible by tracking external optical surrogates. The surrogates are used to compensate for time delays and to predict internal landmarks using a correlation model. The correlation depends significantly on the surrogate position and breathing characteristics of the patient. In this context, we aim to increase the accuracy and robustness of prediction and correlation models by using a multi-modal sensor setup. Here, we evaluate the correlation coefficient of a strain belt, an acceleration and temperature sensor (air flow) with respect to external optical sensors and one internal landmark in the liver, measured by 3D ultrasound. The focus of this study is the influence of breathing artefacts, like coughing and harrumphing. Evaluating seven subjects, we found a strong decrease of the correlation for all modalities in case of artefacts. The results indicate that no precise motion compensation during these times is possible. Overall, we found that apart from the optical markers, the strain belt and temperature sensor data show the best correlation to external and internal motion.


Assuntos
Artefatos , Movimento , Respiração , Robótica/instrumentação , Aceleração , Humanos , Masculino , Temperatura
17.
Int J Comput Assist Radiol Surg ; 7(6): 845-52, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22421917

RESUMO

PURPOSE: In Transcranial Magnetic Stimulation (TMS), the principle of magnetic induction is used to stimulate the brain non-invasively. Currently, robotic TMS systems are developed to guarantee precise coil placement on the head and in this way achieve the repeatability of stimulation results. However, usability concerns such as the complicated coil positioning are still unsolved for motion compensated robotized TMS. In this paper, we demonstrate the integration of a force-torque control into a robotic TMS system to improve usability, safety, and precision. METHODS: We integrated a force-torque sensor between robot effector and TMS coil. Coil calibration and gravity compensation have been developed. Based on them, we have implemented hand-assisted positioning for easy and fast coil placement. Furthermore, we have enhanced the existing motion compensation algorithms with a contact pressure control. RESULTS: The positioning time for an experienced user decreased up to 40% with the help of hand-assisted positioning in comparison with not hand-assisted robotized positioning. It also enabled an inexperienced user to use the system safely. CONCLUSION: Integration of a force-torque control into the motion compensated robotized TMS system greatly enhances system's usability, which is a prerequisite for integration in the clinical workflow and clinical acceptance.


Assuntos
Neuronavegação/instrumentação , Robótica/instrumentação , Estimulação Magnética Transcraniana/instrumentação , Algoritmos , Calibragem , Desenho de Equipamento , Humanos , Movimento (Física) , Imagens de Fantasmas , Pressão , Software , Torque
18.
Int J Comput Assist Radiol Surg ; 7(3): 483-92, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21853246

RESUMO

PURPOSE: In motion-compensated image-guided radiotherapy, accurate tracking of the target region is required. This tracking process includes building a correlation model between external surrogate motion and the motion of the target region. A novel correlation method is presented and compared with the commonly used polynomial model. METHODS AND MATERIALS: The CyberKnife system (Accuray, Inc., Sunnyvale/CA) uses a polynomial correlation model to relate externally measured surrogate data (optical fibres on the patient's chest emitting red light) to infrequently acquired internal measurements (X-ray data). A new correlation algorithm based on ɛ -Support Vector Regression (SVR) was developed. Validation and comparison testing were done with human volunteers using live 3D ultrasound and externally measured infrared light-emitting diodes (IR LEDs). Seven data sets (5:03-6:27 min long) were recorded from six volunteers. RESULTS: Polynomial correlation algorithms were compared to the SVR-based algorithm demonstrating an average increase in root mean square (RMS) accuracy of 21.3% (0.4 mm). For three signals, the increase was more than 29% and for one signal as much as 45.6% (corresponding to more than 1.5 mm RMS). Further analysis showed the improvement to be statistically significant. CONCLUSION: The new SVR-based correlation method outperforms traditional polynomial correlation methods for motion tracking. This method is suitable for clinical implementation and may improve the overall accuracy of targeted radiotherapy.


Assuntos
Simulação por Computador , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Pneumopatias/diagnóstico , Modelos Biológicos , Movimento (Física) , Tórax/fisiologia , Algoritmos , Humanos , Pneumopatias/cirurgia , Radiocirurgia/métodos , Reprodutibilidade dos Testes
19.
Int J Med Robot ; 8(4): 407-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22508570

RESUMO

BACKGROUND: For many robot-assisted medical applications, it is necessary to accurately compute the relation between the robot's coordinate system and the coordinate system of a localisation or tracking device. Today, this is typically carried out using hand-eye calibration methods like those proposed by Tsai/Lenz or Daniilidis. METHODS: We present a new method for simultaneous tool/flange and robot/world calibration by estimating a solution to the matrix equation AX = YB. It is computed using a least-squares approach. Because real robots and localisation are all afflicted by errors, our approach allows for non-orthogonal matrices, partially compensating for imperfect calibration of the robot or localisation device. We also introduce a new method where full robot/world and partial tool/flange calibration is possible by using localisation devices providing less than six degrees of freedom (DOFs). The methods are evaluated on simulation data and on real-world measurements from optical and magnetical tracking devices, volumetric ultrasound providing 3-DOF data, and a surface laser scanning device. We compare our methods with two classical approaches: the method by Tsai/Lenz and the method by Daniilidis. RESULTS: In all experiments, the new algorithms outperform the classical methods in terms of translational accuracy by up to 80% and perform similarly in terms of rotational accuracy. Additionally, the methods are shown to be stable: the number of calibration stations used has far less influence on calibration quality than for the classical methods. CONCLUSION: Our work shows that the new method can be used for estimating the relationship between the robot's and the localisation device's coordinate systems. The new method can also be used for deficient systems providing only 3-DOF data, and it can be employed in real-time scenarios because of its speed.


Assuntos
Robótica/estatística & dados numéricos , Algoritmos , Diagnóstico por Computador/instrumentação , Diagnóstico por Computador/estatística & dados numéricos , Humanos , Lasers , Robótica/instrumentação , Rotação , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/estatística & dados numéricos , Interface Usuário-Computador
20.
Int J Comput Assist Radiol Surg ; 6(1): 93-101, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20431957

RESUMO

OBJECTIVE: Recently, radiosurgical treatment of cardiac arrhythmia, especially atrial fibrillation, has been proposed. Using the CyberKnife, focussed radiation will be used to create ablation lines on the beating heart to block unwanted electrical activity. Since this procedure requires high accuracy, the inevitable latency of the system (i.e., the robotic manipulator following the motion of the heart) has to be compensated for. MATERIALS AND METHODS: We examine the applicability of prediction algorithms developed for respiratory motion prediction to the prediction of pulsatory motion. We evaluated the MULIN, nLMS, wLMS, SVRpred and EKF algorithms. The test data used has been recorded using external infrared position sensors, 3D ultrasound and the NavX catheter systems. RESULTS: With this data, we have shown that the error from latency can be reduced by at least 10 and as much as 75% (44% average), depending on the type of signal. It has also been shown that, although the SVRpred algorithm was successful in most cases, it was outperformed by the simple nLMS algorithm, the EKF or the wLMS algorithm in a number of cases. CONCLUSION: We have shown that prediction of cardiac motion is possible and that the algorithms known from respiratory motion prediction are applicable. Since pulsation is more regular than respiration, more research will have to be done to improve frequency-tracking algorithms, like the EKF method, which performed better than expected from their behaviour on respiratory motion traces.


Assuntos
Algoritmos , Fibrilação Atrial/cirurgia , Previsões , Radiocirurgia/métodos , Mecânica Respiratória/fisiologia , Robótica , Cirurgia Assistida por Computador/métodos , Adulto , Fibrilação Atrial/fisiopatologia , Humanos , Masculino , Valor Preditivo dos Testes , Valores de Referência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA